Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.351
Filtrar
1.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513027

RESUMO

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Assuntos
Aciltransferases , Proteínas de Bactérias , Evolução Molecular Direcionada , Policetídeo Sintases , Policetídeos , Proteínas Recombinantes de Fusão , Aciltransferases/genética , Aciltransferases/química , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Serratia , Motivos de Aminoácidos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
2.
Adv Exp Med Biol ; 3234: 59-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507200

RESUMO

There are myriads of protein-protein complexes that form within the cell. In addition to classical binding events between globular domains, many protein-protein interactions involve short disordered protein regions. The latter contain so-called linear motifs binding specifically to ordered protein domain surfaces. Linear binding motifs are classified based on their consensus sequence, where only a few amino acids are conserved. In this chapter we will review experimental and in silico techniques that can be used for the discovery and characterization of linear motif mediated protein-protein complexes involved in cellular signaling, protein level and gene expression regulation.


Assuntos
Aminoácidos , Motivos de Aminoácidos
3.
J Biol Chem ; 300(3): 105740, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340794

RESUMO

Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.


Assuntos
Citoesqueleto de Actina , Actinas , Leishmania major , Parasitos , Profilinas , Animais , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalização , Cristalografia por Raios X , Leishmania major/citologia , Leishmania major/metabolismo , Parasitos/citologia , Parasitos/metabolismo , Profilinas/química , Profilinas/metabolismo , Ligação Proteica , Domínios Proteicos
4.
Arch Microbiol ; 206(3): 94, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334822

RESUMO

One of the mechanisms viruses use in hijacking host cellular machinery is mimicking Short Linear Motifs (SLiMs) in host proteins to maintain their life cycle inside host cells. In the face of the escalating volume of virus-host protein-protein interactions (vhPPIs) documented in databases; the accurate prediction of molecular mimicry remains a formidable challenge due to the inherent degeneracy of SLiMs. Consequently, there is a pressing need for computational methodologies to predict new instances of viral mimicry. Our present study introduces a DMI-de-novo pipeline, revealing that vhPPIs catalogued in the VirHostNet3.0 database effectively capture domain-motif interactions (DMIs). Notably, both affinity purification coupled mass spectrometry and yeast two-hybrid assays emerged as good approaches for delineating DMIs. Furthermore, we have identified new vhPPIs mediated by SLiMs across different viruses. Importantly, the de-novo prediction strategy facilitated the recognition of several potential mimicry candidates implicated in the subversion of host cellular proteins. The insights gleaned from this research not only enhance our comprehension of the mechanisms by which viruses co-opt host cellular machinery but also pave the way for the development of novel therapeutic interventions.


Assuntos
Proteínas , Vírus , Motivos de Aminoácidos , Proteínas/química , Proteínas/metabolismo , Vírus/genética , Vírus/metabolismo , Interações Hospedeiro-Patógeno
5.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345234

RESUMO

Many protein-protein interactions involve the binding of short protein segments to peptide-binding domains. Usually, such interactions require the recognition of linear motifs with variable conservation. The combination of highly conserved and more variable regions in the same ligands often contributes to the multispecificity of binding, a common property of enzymes and cell signaling proteins. Characterization of amino acid preferences of peptide-binding domains is important for the design of mediators of protein-protein interactions (PPIs). Computational methods are an efficient alternative to the often costly and cumbersome experimental techniques, enabling the design of potential mediators that can be later validated in downstream experiments. Here, we described a methodology using the Pepspec application of the Rosetta molecular modeling package to predict the amino acid preferences of peptide-binding domains. This methodology is useful when the structure of the receptor protein and the nature of the peptide ligand are both known or can be inferred. The methodology starts with a well-characterized anchor from the ligand, which is extended by randomly adding amino acid residues. The binding affinity of peptides generated this way is then evaluated by flexible-backbone peptide docking in order to select the peptides with the best predicted binding scores. These peptides are then used to calculate amino acid preferences and to optionally compute a position-weight matrix (PWM) that can be used in further studies. To illustrate the application of this methodology, we used the interaction between subunits of human interferon regulatory factor 5 (IRF5), previously known to be multispecific but globally guided by a short conserved motif called pLxIS. The estimated amino acid preferences were consistent with previous knowledge about the IRF5 binding surface. Positions occupied by phosphorylatable serine residues exhibited a high frequency of aspartate and glutamate, likely because their negatively charged side chains are similar to phosphoserine.


Assuntos
Aminoácidos , Peptídeos , Humanos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Ligantes , Peptídeos/química , Proteínas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Ligação Proteica , Sítios de Ligação , Motivos de Aminoácidos
6.
Sci Rep ; 14(1): 3354, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336826

RESUMO

Throughout pregnancy, the decidua is predominantly populated by NK lymphocytes expressing Killer immunoglobulin-like receptors (KIR) that recognize human leukocyte antigen-C (HLA-C) ligands from trophoblast cells. This study aims to investigate the association of KIR-HLA-C phenotypes in couples facing infertility, particularly recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF), in comparison to a reference population and fertile controls. This observational, non-interventional retrospective case-control study included patients consecutively referred to our Reproductive Immunology Unit from 2015 to 2019. We analyzed the frequencies of KIR and HLA-C genes. As control groups, we analyzed a reference Spanish population for KIR analysis and 29 fertile controls and their male partners for KIR and HLA-C combinations. We studied 397 consecutively referred women with infertility and their male partners. Among women with unexplained RPL (133 women) and RIF (176 women), the centromeric (cen)AA KIR genotype was significantly more prevalent compared to the reference Spanish population (p = 0.001 and 0.02, respectively). Furthermore, cenAA was associated with a 1.51-fold risk of RPL and a 1.2-fold risk of RIF. Conversely, the presence of BB KIR showed a lower risk of reproductive failure compared to non-BB KIR (OR: 0.12, p < 0.001). Women and their partners with HLA-C1C1/C1C1 were significantly less common in the RPL-Group (p < 0.001) and RIF-Group (p = 0.002) compared to the control group. Moreover, the combination of cenAA/C1C1 in women with C1C1 partners was significantly higher in the control group than in the RPL (p = 0.009) and RIF (p = 0.04) groups, associated with a 5-fold increase in successful pregnancy outcomes. In our cohort, the cenAA KIR haplotype proved to be a more accurate biomarker than the classic AA KIR haplotype for assessing the risk of RPL and RIF, and might be particularly useful to identify women at increased risk among the heterogeneous KIR AB or Bx population. The classification of centromeric KIR haplotypes outperforms classical KIR haplotypes, making it a better indicator of potential maternal-fetal KIR-HLA-C mismatch in patients.


Assuntos
Aborto Habitual , Infertilidade , Gravidez , Humanos , Masculino , Feminino , Antígenos HLA-C/genética , Estudos Retrospectivos , Motivos de Aminoácidos , Estudos de Casos e Controles , Aborto Habitual/genética , Receptores KIR/genética , Infertilidade/genética , Biomarcadores
7.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377393

RESUMO

MOTIVATION: Eukaryotic linear motifs (ELMs), or Short Linear Motifs, are protein interaction modules that play an essential role in cellular processes and signaling networks and are often involved in diseases like cancer. The ELM database is a collection of manually curated motif knowledge from scientific papers. It has become a crucial resource for investigating motif biology and recognizing candidate ELMs in novel amino acid sequences. Users can search amino acid sequences or UniProt Accessions on the ELM resource web interface. However, as with many web services, there are limitations in the swift processing of large-scale queries through the ELM web interface or API calls, and, therefore, integration into protein function analysis pipelines is limited. RESULTS: To allow swift, large-scale motif analyses on protein sequences using ELMs curated in the ELM database, we have extended the gget suite of Python and command line tools with a new module, gget elm, which does not rely on the ELM server for efficiently finding candidate ELMs in user-submitted amino acid sequences and UniProt Accessions. gget elm increases accessibility to the information stored in the ELM database and allows scalable searches for motif-mediated interaction sites in the amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The manual and source code are available at https://github.com/pachterlab/gget.


Assuntos
Proteínas , Software , Motivos de Aminoácidos , Bases de Dados de Proteínas , Proteínas/química , Sequência de Aminoácidos
8.
J Biol Chem ; 300(3): 105756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364891

RESUMO

Heterotrimeric G proteins (Gαßγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Transdução de Sinais , Motivos de Aminoácidos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo
10.
J Mol Biol ; 436(4): 168444, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218366

RESUMO

Many examples are known of regions of intrinsically disordered proteins that fold into α-helices upon binding to their targets. These helical binding motifs (HBMs) can be partially helical also in the unbound state, and this so-called residual structure can affect binding affinity and kinetics. To investigate the underlying mechanisms governing the formation of residual helical structure, we assembled a dataset of experimental helix contents of 65 peptides containing HBM that fold-upon-binding. The average residual helicity is 17% and increases to 60% upon target binding. The helix contents of residual and target-bound structures do not correlate, however the relative location of helix elements in both states shows a strong overlap. Compared to the general disordered regions, HBMs are enriched in amino acids with high helix preference and these residues are typically involved in target binding, explaining the overlap in helix positions. In particular, we find that leucine residues and leucine motifs in HBMs are the major contributors to helix stabilization and target-binding. For the two model peptides, we show that substitution of leucine motifs to other hydrophobic residues (valine or isoleucine) leads to reduction of residual helicity, supporting the role of leucine as helix stabilizer. From the three hydrophobic residues only leucine can efficiently stabilize residual helical structure. We suggest that the high occurrence of leucine motifs and a general preference for leucine at binding interfaces in HBMs can be explained by its unique ability to stabilize helical elements.


Assuntos
Proteínas Intrinsicamente Desordenadas , Leucina , Proteínas Intrinsicamente Desordenadas/química , Leucina/química , Peptídeos/química , Estrutura Secundária de Proteína , Motivos de Aminoácidos , Conjuntos de Dados como Assunto , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Modelos Químicos
11.
BMC Genomics ; 25(1): 13, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166535

RESUMO

BACKGROUND: Alcohol dehydrogenases (ADHs) are the crucial enzymes that can convert ethanol into acetaldehyde. In tobacco, members of ADH gene family are involved in various stresses tolerance reactions, lipid metabolism and pathways related to plant development. It will be of great application significance to analyze the ADH gene family and expression profile under various stresses in tobacco. RESULTS: A total of 53 ADH genes were identified in tobacco (Nicotiana tabacum L.) genome and were grouped into 6 subfamilies based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were highly conserved among the NtADH genes, especially the members within the same subfamily. A total of 5 gene pairs of tandem duplication, and 3 gene pairs of segmental duplication were identified based on the analysis of gene duplication events. Cis-regulatory elements of the NtADH promoters participated in cell development, plant hormones, environmental stress, and light responsiveness. The analysis of expression profile showed that NtADH genes were widely expressed in topping stress and leaf senescence. However, the expression patterns of different members appeared to be diverse. The qRT-PCR analysis of 13 NtADH genes displayed their differential expression pattern in response to the bacterial pathogen Ralstonia solanacearum L. INFECTION: Metabolomics analysis revealed that NtADH genes were primarily associated with carbohydrate metabolism, and moreover, four NtADH genes (NtADH20/24/48/51) were notably involved in the pathway of alpha-linolenic acid metabolism which related to the up-regulation of 9-hydroxy-12-oxo-10(E), 15(Z)-octadecadienoic acid and 9-hydroxy-12-oxo-15(Z)-octadecenoic acid. CONCLUSION: The genome-wide identification, evolutionary analysis, expression profiling, and exploration of related metabolites and metabolic pathways associated with NtADH genes have yielded valuable insights into the roles of these genes in response to various stresses. Our results could provide a basis for functional analysis of NtADH gene family under stressful conditions.


Assuntos
Família Multigênica , Tabaco , Tabaco/genética , Filogenia , Motivos de Aminoácidos , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Perfilação da Expressão Gênica/métodos
12.
Nucleic Acids Res ; 52(D1): D442-D455, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962385

RESUMO

Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Eucariotos , Motivos de Aminoácidos/genética , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas/metabolismo , Eucariotos/genética , Internet
13.
DNA Cell Biol ; 43(2): 74-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153368

RESUMO

The effector proteins of several pathogenic bacteria contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif or other similar motifs. The EPIYA motif is delivered into the host cells by type III and IV secretion systems, through which its tyrosine residue undergoes phosphorylation by host kinases. These motifs atypically interact with a wide range of Src homology 2 (SH2) domain-containing mammalian proteins through tyrosine phosphorylation, which leads to the perturbation of multiple signaling cascades, the spread of infection, and improved bacterial colonization. Interestingly, it has been reported that EPIYA (or EPIYA-like) motifs exist in mammalian proteomes and regulate mammalian cellular-signaling pathways, leading to homeostasis and disease pathophysiology. It is possible that pathogenic bacteria have exploited EPIYA (or EPIYA-like) motifs from mammalian proteins and that the mammalian EPIYA (or EPIYA-like) motifs have evolved to have highly specific interactions with SH2 domain-containing proteins. In this review, we focus on the regulation of mammalian cellular-signaling pathways by mammalian proteins containing these motifs.


Assuntos
Bactérias , Proteínas de Bactérias , Animais , Proteínas de Bactérias/química , Motivos de Aminoácidos , Fosforilação , Transdução de Sinais , Tirosina/metabolismo , Mamíferos/metabolismo
14.
J Biol Chem ; 300(1): 105565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103642

RESUMO

The biochemical SRX (super-relaxed) state of myosin has been defined as a low ATPase activity state. This state can conserve energy when the myosin is not recruited for muscle contraction. The SRX state has been correlated with a structurally defined ordered (versus disordered) state of muscle thick filaments. The two states may be linked via a common interacting head motif (IHM) where the two heads of heavy meromyosin (HMM), or myosin, fold back onto each other and form additional contacts with S2 and the thick filament. Experimental observations of the SRX, IHM, and the ordered form of thick filaments, however, do not always agree, and result in a series of unresolved paradoxes. To address these paradoxes, we have reexamined the biochemical measurements of the SRX state for porcine cardiac HMM. In our hands, the commonly employed mantATP displacement assay was unable to quantify the population of the SRX state with all data fitting very well by a single exponential. We further show that mavacamten inhibits the basal ATPases of both porcine ventricle HMM and S1 (Ki, 0.32 and 1.76 µM respectively) while dATP activates HMM cooperatively without any evidence of an SRX state. A combination of our experimental observations and theories suggests that the displacement of mantATP in purified proteins is not a reliable assay to quantify the SRX population. This means that while the structurally defined IHM and ordered thick filaments clearly exist, great care must be employed when using the mantATP displacement assay.


Assuntos
Trifosfato de Adenosina , Ensaios Enzimáticos , Miosina não Muscular Tipo IIA , Suínos , ortoaminobenzoatos , Animais , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Benzilaminas/farmacologia , Ensaios Enzimáticos/métodos , Ensaios Enzimáticos/normas , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Ventrículos do Coração/metabolismo , Contração Miocárdica , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , ortoaminobenzoatos/metabolismo , Uracila/análogos & derivados , Uracila/farmacologia
15.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103644

RESUMO

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Assuntos
Mutação , Sialiltransferases , Humanos , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Simulação por Computador , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Mutação Puntual , Conformação Proteica em Folha beta , Transporte Proteico , Algoritmo Florestas Aleatórias , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/genética , Sialiltransferases/metabolismo
16.
J Biol Chem ; 300(1): 105575, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110034

RESUMO

The carboxy-terminal tail of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope protein (E) contains a PDZ-binding motif (PBM) which is crucial for coronavirus pathogenicity. During SARS-CoV-2 infection, the viral E protein is expressed within the Golgi apparatus membrane of host cells with its PBM facing the cytoplasm. In this work, we study the molecular mechanisms controlling the presentation of the PBM to host PDZ (PSD-95/Dlg/ZO-1) domain-containing proteins. We show that at the level of the Golgi apparatus, the PDZ-binding motif of the E protein is not detected by E C-terminal specific antibodies nor by the PDZ domain-containing protein-binding partner. Four alanine substitutions upstream of the PBM in the central region of the E protein tail is sufficient to generate immunodetection by anti-E antibodies and trigger robust recruitment of the PDZ domain-containing protein into the Golgi organelle. Overall, this work suggests that the presentation of the PBM to the cytoplasm is under conformational regulation mediated by the central region of the E protein tail and that PBM presentation probably does not occur at the surface of Golgi cisternae but likely at post-Golgi stages of the viral cycle.


Assuntos
Proteínas do Envelope de Coronavírus , Citoplasma , SARS-CoV-2 , Humanos , Motivos de Aminoácidos , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Guanilato Quinases/metabolismo , Domínios PDZ , Ligação Proteica , Conformação Proteica , Transporte Proteico , SARS-CoV-2/química , SARS-CoV-2/metabolismo
17.
Dev Comp Immunol ; 153: 105121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135021

RESUMO

Leukocyte immune-type receptors (LITRs) represent a polymorphic and polygenic family of immunoregulatory proteins originally discovered in channel catfish (Ictalurus punctatus; IpLITRs). Belonging to the immunoglobulin superfamily (IgSF), IpLITRs are generally classified as stimulatory or inhibitory types based on their utilization of various intracellular tyrosine-based signaling motifs. While research has shown that IpLITRs can activate as well as abrogate different immune cell effector responses including phagocytosis, recent identification of LITRs within the zebrafish genome (Danio rerio; DrLITRs) revealed the existence of fish LITR-types uniquely containing counteracting stimulatory and inhibitory cytoplasmic tail (CYT) region motifs (i.e., an immunoreceptor tyrosine-based activation motif; ITAM, and immunoreceptor tyrosine-based inhibitory motif; ITIM) within the same receptor. This arrangement is unusual as these motifs typically exist on separate stimulatory (i.e., ITAM-containing) or inhibitory (i.e., ITIM-containing) immunoregulatory receptors that then co-engage to fine-tune cellular signaling and effector responses. Using a flow cytometric-based phagocytosis assay, we show here that engagement of DrLITR 1.2-expressing cells with antibody coated 4.5 µm beads causes a robust ITAM-dependent phagocytic response and reveal that its tandem ITIM motif surprisingly enhances the DrLITR 1.2-induced phagocytic activity while simultaneously decreasing the receptors ability to bind the beads. Confocal microscopy studies also revealed that the ITIM-associated inhibitory signaling molecule SHP-2 is localized to the phagocytic synapse during the phagocytic response. Overall, these results provide the first functional characterization of teleost immune receptors containing a tandem ITAM and ITIM and allow for the proposal of an intracytoplasmic tail signaling model for ITIM-mediated enhancement of ITAM-dependent cellular activation.


Assuntos
Ictaluridae , Peixe-Zebra , Animais , Leucócitos , Fagócitos , Transdução de Sinais , Tirosina/metabolismo , Motivos de Aminoácidos
18.
Planta ; 259(1): 16, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078967

RESUMO

MAIN CONCLUSION: This review provides a detailed description of the function and mechanism of VQ family gene, which is helpful for further research and application of VQ gene resources to improve crops. Valine-glutamine (VQ) motif-containing proteins are a large class of transcriptional regulatory cofactors. VQ proteins have their own unique molecular characteristics. Amino acids are highly conserved only in the VQ domain, while other positions vary greatly. Most VQ genes do not contain introns and the length of their proteins is less than 300 amino acids. A majority of VQ proteins are predicted to be localized in the nucleus. The promoter of many VQ genes contains stress or growth related elements. Segment duplication and tandem duplication are the main amplification mechanisms of the VQ gene family in angiosperms and gymnosperms, respectively. Purification selection plays a crucial role in the evolution of many VQ genes. By interacting with WRKY, MAPK, and other proteins, VQ proteins participate in the multiple signaling pathways to regulate plant growth and development, as well as defense responses to biotic and abiotic stresses. Although there have been some reports on the VQ gene family in plants, most of them only identify family members, with little functional verification, and there is also a lack of complete, detailed, and up-to-date review of research progress. Here, we comprehensively summarized the research progress of VQ genes that have been published so far, mainly including their molecular characteristics, biological functions, importance of VQ motif, and working mechanisms. Finally, the regulatory network and model of VQ genes were drawn, a precise molecular breeding strategy based on VQ genes was proposed, and the current problems and future prospects were pointed out, providing a powerful reference for further research and utilization of VQ genes in plant improvement.


Assuntos
Proteínas de Plantas , Plantas , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Plantas/genética , Plantas/metabolismo , Regiões Promotoras Genéticas , Aminoácidos/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
19.
Cell Rep Methods ; 3(11): 100637, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37949066

RESUMO

Peptide-domain interactions mediated by short linear motifs (SLiMs) play crucial roles in cellular biology. The simplicity of SLiMs poses challenges in their computational identification. Existing high-throughput methods for discovering SLiMs lack cellular context as they are typically performed in vitro. We developed a functional selection method using yeast to identify peptides that interact with the endogenous yeast nuclear proteome. Remarkably, peptides selected for in yeast also mediated nuclear import in human cells. Notably, the identified peptides did not resemble classical nuclear localization sequences. This platform has the potential to identify and investigate motifs that interact with the nuclear proteome of yeast and human and to aid in the identification and understanding of alternative protein nuclear import mechanisms.


Assuntos
Proteoma , Saccharomyces cerevisiae , Humanos , Proteoma/genética , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Peptídeos/química
20.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003710

RESUMO

Human T-cell tropic virus type 1 (HTLV-1) is known to be mainly transmitted by cell-to-cell contact due to the lower infectivity of the cell-free virion. However, the reasons why cell-free HTLV-1 infection is poor remain unknown. In this study, we found that the retrovirus pseudotyped with HTLV-1 viral envelope glycoprotein (Env) was infectious when human immunodeficiency virus type 1 (HIV-1) was used to produce the virus. We found that the incorporation of HTLV-1 Env into virus-like particles (VLPs) was low when HTLV-1 Gag was used to produce VLPs, whereas VLPs produced using HIV-1 Gag efficiently incorporated HTLV-1 Env. The production of VLPs using Gag chimeras between HTLV-1 and HIV-1 Gag and deletion mutants of HIV-1 Gag showed that the p6 domain of HIV-1 Gag was responsible for the efficient incorporation of HTLV-1 Env into the VLPs. Further mutagenic analyses of the p6 domain of HIV-1 Gag revealed that the PTAP motif in the p6 domain of HIV-1 Gag facilitates the incorporation of HTLV-1 Env into VLPs. Since the PTAP motif is known to interact with tumor susceptibility gene 101 (TSG101) during the budding process, we evaluated the effect of TSG101 knockdown on the incorporation of HTLV-1 Env into VLPs. We found that TSG101 knockdown suppressed the incorporation of HTLV-1 Env into VLPs and decreased the infectivity of cell-free HIV-1 pseudotyped with HTLV-1 Env. Our results suggest that the interaction of TSG101 with the PTAP motif of the retroviral L domain is involved not only in the budding process but also in the efficient incorporation of HTLV-1 Env into the cell-free virus.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Humanos , Motivos de Aminoácidos , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Vírion/genética , Vírion/metabolismo , HIV-1/fisiologia , Produtos do Gene env/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...