Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.001
Filtrar
1.
PLoS One ; 19(4): e0301169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557903

RESUMO

At present, the development of plants with improved traits like superior quality, high yield, or stress resistance, are highly desirable in agriculture. Accelerated crop improvement, however, must capitalize on revolutionary new plant breeding technologies, like genetically modified and gene-edited crops, to heighten food crop traits. Genome editing still faces ineffective methods for the transformation and regeneration of different plant species and must surpass the genotype dependency of the transformation process. Tomato is considered an alternative plant model system to rice and Arabidopsis, and a model organism for fleshy-fruited plants. Furthermore, tomato cultivars like Micro-Tom are excellent models for tomato research due to its short life cycle, small size, and capacity to grow at high density. Therefore, we developed an indirect somatic embryo protocol from cotyledonary tomato explants and used this to generate epigenetically edited tomato plants for the SlWRKY29 gene via CRISPR-activation (CRISPRa). We found that epigenetic reprogramming for SlWRKY29 establishes a transcriptionally permissive chromatin state, as determined by an enrichment of the H3K4me3 mark. A whole transcriptome analysis of CRISPRa-edited pro-embryogenic masses and mature somatic embryos allowed us to characterize the mechanism driving somatic embryo induction in the edited tomato cv. Micro-Tom. Furthermore, we show that enhanced embryo induction and maturation are influenced by the transcriptional effector employed during CRISPRa, as well as by the medium composition and in vitro environmental conditions such as osmotic components, plant growth regulators, and light intensity.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Melhoramento Vegetal , Desenvolvimento Embrionário , Regeneração , Edição de Genes , Plantas Geneticamente Modificadas/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta
2.
Clin Orthop Surg ; 16(2): 275-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562624

RESUMO

Background: To date, the efficiency of collagen meniscal scaffold implantation in Asian patients with partial meniscal defects has not been evaluated. In addition, no study has quantitatively analyzed meniscal regeneration using three-dimensional (3D) volume analysis after collagen scaffold implantation. We aimed to compare meniscal regeneration using 3D volume analysis between Asian patients undergoing collagen-based meniscal scaffold implantation after partial meniscectomy and those undergoing only partial meniscectomy. Methods: Nineteen patients who underwent collagen-based meniscal scaffold implantation and 14 who underwent partial meniscectomy were analyzed with a prospective randomized control design for 12 months postoperatively. The demographic characteristics, Kellgren-Lawrence grade, and location of the injury lesion (medial or lateral meniscus) were not significantly different between the groups. Using 3D volume analysis with magnetic resonance imaging (MRI), the meniscus-removing ratio during the operative procedure and the meniscus defect-filling ratio were measured during the 12-month postoperative period. Clinically, the visual analog scale, International Knee Documentation Committee score, and Knee Injury and Osteoarthritis Outcome Score were evaluated. The Whole-Organ Magnetic Resonance Imaging Score (WORMS) and Genovese grade were also evaluated using MRI. Results: In the 3D volume analysis, the average meniscus-removing ratio during surgery was not significantly different between the groups (-9.3% vs. -9.2%, p = 0.984). The average meniscus defect-filling ratio during the postoperative 12-month period was 7.5% in the scaffold group and -0.4% in the meniscectomy group (p < 0.001). None of the clinical results were significantly different between the scaffold and meniscectomy groups at 12 months postoperatively. The average change in the total WORMS score was not significantly different between the groups (0 vs. 1.9, p = 0.399). The Genovese grade of the implanted collagen scaffold did not significantly change during the follow-up period in terms of morphology and size (p = 0.063); however, the grade significantly improved in terms of signal intensity (p = 0.001). Conclusions: Definite meniscal regeneration and stable scaffold incorporation were observed after collagen-based meniscal scaffold implantation in Asian patients during 12 months of follow-up. A long-term follow-up study with a larger cohort is required to determine the advantages of collagenous meniscal scaffold implantation in Asian patients.


Assuntos
Meniscos Tibiais , Tecidos Suporte , Humanos , Seguimentos , Resultado do Tratamento , Estudos Prospectivos , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/cirurgia , Colágeno , Regeneração
3.
Sci Rep ; 14(1): 8046, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580748

RESUMO

Osteoarthritis is a common chronic disease and major cause of disability and chronic pain in ageing populations. In this pathology, the entire joint is involved, and the regeneration of articular cartilage still remains one of the main challenges. Here, we investigated the molecular mechanisms underlying cartilage regeneration in young mice using a full-thickness cartilage injury (FTCI) model. FTCI-induced cartilage defects were created in the femoral trochlea of young and adult C57BL/6 mice. To identify key molecules and pathways involved in the early response to cartilage injury, we performed RNA sequencing (RNA-seq) analysis of cartilage RNA at 3 days after injury. Young mice showed superior cartilage regeneration compared to adult mice after cartilage injury. RNA-seq analysis revealed significant upregulation of genes associated with the immune response, particularly in the IFN-γ signaling pathway and qRT-PCR analysis showed macrophage polarization in the early phase of cartilage regeneration (3 days) in young mice after injury, which might promote the removal of damaged or necrotic cells and initiate cartilage regeneration in response to injury. IFN-γR1- and IFN-γ-deficient mice exhibited impaired cartilage regeneration following cartilage injury. DMM-induced and spontaneous OA phenotypes were exacerbated in IFN-γR1-/- mice than in wild-type mice. Our data support the hypothesis that IFN-γ signaling is necessary for cartilage regeneration, as well as for the amelioration of post-traumatic and age-induced OA.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Interferon gama/genética , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Cartilagem Articular/patologia , Regeneração , Transdução de Sinais , Modelos Animais de Doenças
5.
J Nanobiotechnology ; 22(1): 150, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575923

RESUMO

Dental pulp regeneration is a promising strategy for addressing tooth disorders. Incorporating this strategy involves the fundamental challenge of establishing functional vascular networks using dental pulp stem cells (DPSCs) to support tissue regeneration. Current therapeutic approaches lack efficient and stable methods for activating DPSCs. In the study, we used a chemically modified microRNA (miRNA)-loaded tetrahedral-framework nucleic acid nanostructure to promote DPSC-mediated angiogenesis and dental pulp regeneration. Incorporating chemically modified miR-126-3p into tetrahedral DNA nanostructures (miR@TDNs) represents a notable advancement in the stability and efficacy of miRNA delivery into DPSCs. These nanostructures enhanced DPSC proliferation, migration, and upregulated angiogenesis-related genes, enhancing their paracrine signaling effects on endothelial cells. This enhanced effect was substantiated by improvements in endothelial cell tube formation, migration, and gene expression. Moreover, in vivo investigations employing matrigel plug assays and ectopic dental pulp transplantation confirmed the potential of miR@TDNs in promoting angiogenesis and facilitating dental pulp regeneration. Our findings demonstrated the potential of chemically modified miRNA-loaded nucleic acid nanostructures in enhancing DPSC-mediated angiogenesis and supporting dental pulp regeneration. These results highlighted the promising role of chemically modified nucleic acid-based delivery systems as therapeutic agents in regenerative dentistry and tissue engineering.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais , Polpa Dentária , Células-Tronco , Diferenciação Celular , Regeneração , DNA/metabolismo , Proliferação de Células/fisiologia
6.
PLoS One ; 19(3): e0294318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446779

RESUMO

Enzymatic browning poses a significant challenge that limits in vitro propagation and genetic transformation of plant tissues. This research focuses on investigating how adding antioxidant substances can suppress browning, leading to improved efficiency in transforming plant tissues using Agrobacterium and subsequent plant regeneration from rough lemon (Citrus × jambhiri). When epicotyl segments of rough lemon were exposed to Agrobacterium, they displayed excessive browning and tissue decay. This was notably different from the 'Hamlin' explants, which did not exhibit the same issue. The regeneration process failed completely in rough lemon explants, and they accumulated high levels of total phenolic compounds (TPC) and polyphenol oxidase (PPO), which contribute to browning. To overcome these challenges, several antioxidant and osmoprotectant compounds, including lipoic acid, melatonin, glycine betaine, and proline were added to the tissue culture medium to reduce the oxidation of phenolic compounds and mitigate browning. Treating epicotyl segments with 100 or 200 µM melatonin led to a significant reduction in browning and phenolic compound accumulation. This resulted in enhanced shoot regeneration, increased transformation efficiency, and reduced tissue decay. Importantly, melatonin supplementation effectively lowered the levels of TPC and PPO in the cultured explants. Molecular and physiological analyses also confirmed the successful overexpression of the CcNHX1 transcription factor, which plays a key role in imparting tolerance to salinity stress. This study emphasizes the noteworthy impact of supplementing antioxidants in achieving successful genetic transformation and plant regeneration in rough lemon. These findings provide valuable insights for developing strategies to address enzymatic browning and enhance the effectiveness of plant tissue culture and genetic engineering methods with potential applications across diverse plant species.


Assuntos
Citrus , Melatonina , Plantas Geneticamente Modificadas , Melatonina/farmacologia , Antioxidantes/farmacologia , Citrus/genética , Agrobacterium , Catecol Oxidase , Fenóis/farmacologia , Regeneração , Suplementos Nutricionais
7.
Sci Rep ; 14(1): 6670, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509148

RESUMO

Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.


Assuntos
Orelha Interna , Peixes Listrados , Sistema da Linha Lateral , Perciformes , Animais , Masculino , Feminino , Peixe-Zebra/genética , Células Ciliadas Auditivas/metabolismo , Regeneração/genética , Mamíferos
8.
Proc Natl Acad Sci U S A ; 121(11): e2316544121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442155

RESUMO

Muscle regeneration is a complex process relying on precise teamwork between multiple cell types, including muscle stem cells (MuSCs) and fibroadipogenic progenitors (FAPs). FAPs are also the main source of intramuscular adipose tissue (IMAT). Muscles without FAPs exhibit decreased IMAT infiltration but also deficient muscle regeneration, indicating the importance of FAPs in the repair process. Here, we demonstrate the presence of bidirectional crosstalk between FAPs and MuSCs via their secretion of extracellular vesicles (EVs) containing distinct clusters of miRNAs that is crucial for normal muscle regeneration. Thus, after acute muscle injury, there is activation of FAPs leading to a transient rise in IMAT. These FAPs also release EVs enriched with a selected group of miRNAs, a number of which come from an imprinted region on chromosome 12. The most abundant of these is miR-127-3p, which targets the sphingosine-1-phosphate receptor S1pr3 and activates myogenesis. Indeed, intramuscular injection of EVs from immortalized FAPs speeds regeneration of injured muscle. In late stages of muscle repair, in a feedback loop, MuSCs and their derived myoblasts/myotubes secrete EVs enriched in miR-206-3p and miR-27a/b-3p. The miRNAs repress FAP adipogenesis, allowing full muscle regeneration. Together, the reciprocal communication between FAPs and muscle cells via miRNAs in their secreted EVs plays a critical role in limiting IMAT infiltration while stimulating muscle regeneration, hence providing an important mechanism for skeletal muscle repair and homeostasis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Células Satélites de Músculo Esquelético , Fibras Musculares Esqueléticas , Comunicação , MicroRNAs/genética , Regeneração/genética
9.
Proc Natl Acad Sci U S A ; 121(11): e2314911121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442169

RESUMO

In amniote limbs, Fibroblast Growth Factor 10 (FGF10) is essential for limb development, but whether this function is broadly conserved in tetrapods and/or involved in adult limb regeneration remains unknown. To tackle this question, we established Fgf10 mutant lines in the newt Pleurodeles waltl which has amazing regenerative ability. While Fgf10 mutant forelimbs develop normally, the hindlimbs fail to develop and downregulate FGF target genes. Despite these developmental defects, Fgf10 mutants were able to regenerate normal hindlimbs rather than recapitulating the embryonic phenotype. Together, our results demonstrate an important role for FGF10 in hindlimb formation, but little or no function in regeneration, suggesting that different mechanisms operate during limb regeneration versus development.


Assuntos
Fator 10 de Crescimento de Fibroblastos , Animais , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Membro Posterior/crescimento & desenvolvimento , Regeneração , Pleurodeles/genética , Pleurodeles/crescimento & desenvolvimento , Pleurodeles/metabolismo
10.
Sci Adv ; 10(12): eadk8331, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507478

RESUMO

Appendage regeneration relies on the formation of blastema, a heterogeneous cellular structure formed at the injury site. However, little is known about the early injury-activated signaling pathways that trigger blastema formation during appendage regeneration. Here, we provide compelling evidence that the extracellular signal-regulated kinase (ERK)-activated casein kinase 2 (CK-2), which has not been previously implicated in appendage regeneration, triggers blastema formation during leg regeneration in the American cockroach, Periplaneta americana. After amputation, CK-2 undergoes rapid activation through ERK-induced phosphorylation within blastema cells. RNAi knockdown of CK-2 severely impairs blastema formation by repressing cell proliferation through down-regulating mitosis-related genes. Evolutionarily, the regenerative role of CK-2 is conserved in zebrafish caudal fin regeneration via promoting blastema cell proliferation. Together, we find and demonstrate that the ERK-activated CK-2 triggers blastema formation in both cockroach and zebrafish, helping explore initiation factors during appendage regeneration.


Assuntos
Regeneração , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Regeneração/genética , Cicatrização , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Results Probl Cell Differ ; 72: 105-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509254

RESUMO

The classic conception of tissue regeneration assumed the existence of tissue-proper regeneration stem cells that are set aside during normal tissue development and reserved as stem cells for regeneration. However, modern studies using cell tracing and other approaches have ruled out the presence of regeneration-proper stem cells in most cases in vertebrate tissue regeneration. The only experimentally validated regeneration-dedicated reserve cells are the satellite cells in skeletal muscle (e.g., Michele 2022) (see Sect. 5.2.3 ). Here, we will first discuss examples of large-scale tissue regeneration, liver regeneration in mammals, and lens and limb regeneration in newts. Then, attempts to widen the tissue regeneration capacity in mammals with exogenous transcription factor genes will be reviewed.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Animais , Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Células-Tronco , Regeneração , Mamíferos , Diferenciação Celular/genética
12.
BMC Oral Health ; 24(1): 394, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539149

RESUMO

OBJECTIVE: The objective of this study was to assess the characterization of human acellular amniotic membrane (HAAM) using various decellularization methods and their impact on the proliferation and differentiation of human dental pulp stem cells (DPSCs). The goal was to identify scaffold materials that are better suited for pulp regeneration. METHODS: Six different decellularization methods were used to generate the amniotic membranes. The characteristics of these scaffolds were examined through hematoxylin and eosin (H&E) staining, scanning electron microscopy (SEM), and immunohistofluorescence staining (IHF). The DPSCs were isolated, cultured, and their capacity for multidirectional differentiation was verified. The third generation (P3) DPSCs, were then combined with HAAM to form the decellularized amniotic scaffold-dental pulp stem cell complex (HAAM-DPSCs complex). Subsequently, the osteogenic capacity of the HAAM-DPSCs complex was evaluated using CCK8 assay, live-dead cell staining, alizarin red and alkaline phosphatase staining, and real-time quantitative PCR (RT-PCR). RESULTS: Out of the assessed decellularization methods, the freeze-thaw + DNase method and the use of ionic detergent (CHAPS) showed minimal changes in structure after decellularization, making it the most effective method. The HAAM-DPSCs complexes produced using this method demonstrated enhanced biological properties, as indicated by CCK8, alizarin red, alkaline phosphatase staining, and RT-PCR. CONCLUSION: The HAAM prepared using the freeze-thaw + DNase method and CHAPS methods exhibited improved surface characteristics and significantly enhanced the proliferation and differentiation capacity of DPSCs when applied to them. The findings, therefore demonstrate the capacity for enhanced pulp regeneration therapy.


Assuntos
Âmnio , Antraquinonas , Polpa Dentária , Humanos , Âmnio/metabolismo , Células Cultivadas , Fosfatase Alcalina/metabolismo , Células-Tronco/metabolismo , Regeneração , Osteogênese , Diferenciação Celular , Desoxirribonucleases/metabolismo , Proliferação de Células
13.
Stem Cell Res Ther ; 15(1): 91, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539224

RESUMO

Musculoskeletal disorders are the leading causes of physical disabilities worldwide. The poor self-repair capacity of musculoskeletal tissues and the absence of effective therapies have driven the development of novel bioengineering-based therapeutic approaches. Adipose-derived stem cell (ADSC)-based therapies are being explored as new regenerative strategies for the repair and regeneration of bone, cartilage, and tendon owing to the accessibility, multipotency, and active paracrine activity of ADSCs. In this review, recent advances in ADSCs and their optimization strategies, including ADSC-derived exosomes (ADSC-Exos), biomaterials, and genetic modifications, are summarized. Furthermore, the preclinical and clinical applications of ADSCs and ADSC-Exos, either alone or in combination with growth factors or biomaterials or in genetically modified forms, for bone, cartilage, and tendon regeneration are reviewed. ADSC-based optimization strategies hold promise for the management of multiple types of musculoskeletal injuries. The timely summary and highlights provided here could offer guidance for further investigations to accelerate the development and clinical application of ADSC-based therapies in musculoskeletal regeneration.


Assuntos
Tecido Adiposo , Exossomos , Tecido Adiposo/metabolismo , Adipócitos , Regeneração , Materiais Biocompatíveis , Exossomos/metabolismo , Células-Tronco/metabolismo
14.
Biomolecules ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540750

RESUMO

Pulpitis is a common and frequent disease in dental clinics. Although vital pulp therapy and root canal treatment can stop the progression of inflammation, they do not allow for genuine structural regeneration and functional reconstruction of the pulp-dentin complex. In recent years, with the development of tissue engineering and regenerative medicine, research on stem cell-based regenerative endodontic therapy (RET) has achieved satisfactory preliminary results, significantly enhancing its clinical translational prospects. As one of the crucial paracrine effectors, the roles and functions of exosomes in pulp-dentin complex regeneration have gained considerable attention. Due to their advantages of cost-effectiveness, extensive sources, favorable biocompatibility, and high safety, exosomes are considered promising therapeutic tools to promote dental pulp regeneration. Accordingly, in this article, we first focus on the biological properties of exosomes, including their biogenesis, uptake, isolation, and characterization. Then, from the perspectives of cell proliferation, migration, odontogenesis, angiogenesis, and neurogenesis, we aim to reveal the roles and mechanisms of exosomes involved in regenerative endodontics. Lastly, immense efforts are made to illustrate the clinical strategies and influencing factors of exosomes applied in dental pulp regeneration, such as types of parental cells, culture conditions of parent cells, exosome concentrations, and scaffold materials, in an attempt to lay a solid foundation for exploring and facilitating the therapeutic strategy of exosome-based regenerative endodontic procedures.


Assuntos
Exossomos , Endodontia Regenerativa , Endodontia Regenerativa/métodos , Polpa Dentária , Regeneração , Medicina Regenerativa
15.
Aging (Albany NY) ; 16(5): 4609-4630, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428405

RESUMO

Muscle satellite cells (SCs) play a crucial role in the regeneration and repair of skeletal muscle injuries. Previous studies have shown that myogenic exosomes can enhance satellite cell proliferation, while the expression of miR-140-5p is significantly reduced during the repair process of mouse skeletal muscle injuries induced by BaCl2. This study aims to investigate the potential of myogenic exosomes carrying miR-140-5p inhibitors to activate SCs and influence the regeneration of injured muscles. Myogenic progenitor cell exosomes (MPC-Exo) and contained miR-140-5p mimics/inhibitors myogenic exosomes (MPC-Exo140+ and MPC-Exo140-) were employed to treat SCs and use the model. The results demonstrate that miR-140-5p regulates SC proliferation by targeting Pax7. Upon the addition of MPC-Exo and MPC-Exo140-, Pax7 expression in SCs significantly increased, leading to the transition of the cell cycle from G1 to S phase and an enhancement in cell proliferation. Furthermore, the therapeutic effect of MPC-Exo140- was validated in animal model, where the expression of muscle growth-related genes substantially increased in the gastrocnemius muscle. Our research demonstrates that MPC-Exo140- can effectively activate dormant muscle satellite cells, initiating their proliferation and differentiation processes, ultimately leading to the formation of new skeletal muscle cells and promoting skeletal muscle repair and remodeling.


Assuntos
Exossomos , MicroRNAs , Células Satélites de Músculo Esquelético , Camundongos , Animais , Células Satélites de Músculo Esquelético/metabolismo , Exossomos/metabolismo , Músculo Esquelético/fisiologia , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração/fisiologia
16.
ACS Biomater Sci Eng ; 10(4): 2426-2441, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38549452

RESUMO

The meniscus is divided into three zones according to its vascularity: an external vascularized red-red zone mainly comprising collagen I, a red-white interphase zone mainly comprising collagens I and II, and an internal white-white zone rich in collagen II. Known scaffolds used to treat meniscal injuries do not reflect the chemical composition of the vascular areas of the meniscus. Therefore, in this study, four composite zonal scaffolds (named A, B, C, and D) were developed and characterized; the developed scaffolds exhibited the main chemical components of the external (collagen I), interphase (collagens I/II), and internal (collagen II) zones of the meniscus. Noncomposite scaffolds were also produced (named E), which had the same shape as the composite scaffolds but were entirely made of collagen I. The composite zonal scaffolds were prepared using different concentrations of collagen I and the same concentration of collagen II and were either cross-linked with genipin or not cross-linked. Porous, biodegradable, and hydrophilic scaffolds with an expected chemical composition were obtained. Their pore size was smaller than the size reported for the meniscus substitutes; however, all scaffolds allowed the adhesion and proliferation of human adipose-derived stem cells (hADSCs) and were not cytotoxic. Data from enzymatic degradation and hADSC proliferation assays were considered for choosing the cross-linked composite scaffolds along with the collagen I scaffold and to test if composite zonal scaffolds seeded with hADSC and cultured with differentiation medium produced fibrocartilage-like tissue different from that formed in noncomposite scaffolds. After 21 days of culture, hADSCs seeded on composite scaffolds afforded an extracellular matrix with aggrecan, whereas hADSCs seeded on noncomposite collagen I scaffolds formed a matrix-like fibrocartilage without aggrecan.


Assuntos
Menisco , Tecidos Suporte , Humanos , Tecidos Suporte/química , Engenharia Tecidual , Agrecanas , Colágeno Tipo I/farmacologia , Colágeno/farmacologia , Regeneração
17.
Biomater Adv ; 159: 213827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490018

RESUMO

Chronic suppurative otitis media (CSOM) is often associated with permanent tympanic membrane (TM) perforation and conductive hearing loss. The current clinical gold standard, using autografts and allografts, suffers from several drawbacks. Artificial replacement materials can help to overcome these drawbacks. Therefore, scaffolds fabricated through digital light processing (DLP) were herein created to support TM regeneration. Various UV-curable printing inks, including gelatin methacryloyl (GelMA), gelatin-norbornene-norbornene (GelNBNB) (crosslinked with thiolated gelatin (GelSH)) and alkene-functionalized poly-ε-caprolactone (E-PCL) (crosslinked with pentaerythritol tetrakis(3-mercaptopropionate) (PETA4SH)) were optimized regarding photo-initiator (PI) and photo-absorber (PA) concentrations through viscosity characterization, photo-rheology and the establishment of working curves for DLP. Our material platform enabled the development of constructs with a range of mechanical properties (plateau storage modulus varying between 15 and 119 kPa). Excellent network connectivity for the GelNBNB and E-PCL constructs was demonstrated (gel fractions >95 %) whereas a post-crosslinking step was required for the GelMA constructs. All samples showed excellent biocompatibility (viability >93 % and metabolic activity >88 %). Finally, in vivo and ex vivo assessments, including histology, vibration and deformation responses measured through laser doppler vibrometry and digital image correlation respectively, were performed to investigate the effects of the scaffolds on the anatomical and physiological regeneration of acute TM perforations in rabbits. The data showed that the most efficient healing with the best functional quality was obtained when both mechanical (obtained with the PCL-based resin) and biological (obtained with the gelatin-based resins) material properties were taken into account.


Assuntos
Perfuração da Membrana Timpânica , Membrana Timpânica , Animais , Coelhos , Gelatina , Sinais (Psicologia) , Perfuração da Membrana Timpânica/cirurgia , Regeneração , Norbornanos
18.
ACS Appl Mater Interfaces ; 16(13): 15879-15892, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529805

RESUMO

Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair. The characterizations and cytocompatibility of the scaffolds were examined in vitro. The antioxidant and anti-inflammatory activities of the scaffold were evaluated in vitro and further studied in vivo using a subcutaneous implantation model. It was found that the modified DTS combined with TA via hydrogen bonds and covalent bonds, and the hydrophilicity, thermal stability, biodegradability, and mechanical characteristics of the scaffold were significantly improved. Afterward, the results demonstrated that DTS-TA could effectively reduce inflammation by increasing the M2/M1 macrophage ratio and interleukin-4 (IL-4) expression, decreasing the secretion of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß), as well as scavenging excessive ROS in vitro and in vivo. In summary, DTS modified with TA provides a potential versatile scaffold for tendon regeneration.


Assuntos
Antioxidantes , Polifenóis , Tecidos Suporte , Humanos , Tecidos Suporte/química , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Tendões , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Regeneração
20.
Biomaterials ; 307: 122522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428092

RESUMO

Cellular skin substitutes such as epidermal constructs have been developed for various applications, including wound healing and skin regeneration. These cellular models are mostly derived from primary cells such as keratinocytes and fibroblasts in a two-dimensional (2D) state, and further development of three-dimensional (3D) cultured organoids is needed to provide insight into the in vivo epidermal phenotype and physiology. Here, we report the development of epidermal organoids (EpiOs) generated from induced pluripotent stem cells (iPSCs) as a novel epidermal construct and its application as a source of secreted biomolecules recovered by extracellular vesicles (EVs) that can be utilized for cell-free therapy of regenerative medicine. Differentiated iPSC-derived epidermal organoids (iEpiOs) are easily cultured and expanded through multiple organoid passages, while retaining molecular and functional features similar to in vivo epidermis. These mature iEpiOs contain epidermal stem cell populations and retain the ability to further differentiate into other skin compartment lineages, such as hair follicle stem cells. By closely recapitulating the epidermal structure, iEpiOs are expected to provide a more relevant microenvironment to influence cellular processes and therapeutic response. Indeed, iEpiOs can generate high-performance EVs containing high levels of the angiogenic growth factor VEGF and miRNAs predicted to regulate cellular processes such as proliferation, migration, differentiation, and angiogenesis. These EVs contribute to target cell proliferation, migration, and angiogenesis, providing a promising therapeutic tool for in vivo wound healing. Overall, the newly developed iEpiOs strategy as an organoid-based approach provides a powerful model for studying basic and translational skin research and may also lead to future therapeutic applications using iEpiOs-secreted EVs.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes , Epiderme , Diferenciação Celular , Organoides , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...