Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.013
Filtrar
1.
Georgian Med News ; (347): 168-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38609136

RESUMO

The idea that obesity and cardiovascular diseases together are considered for a sizable share of adult global morbidity and mortality is supported by epidemiological data. They have intricate systems in which environmental and genetic variables interact, including nutrition. As an environmental component, nutrition has a major and well-known role in managing health and preventing obesity and disorders connected to obesity, such as cardiovascular disease (CVD). Nonetheless, people with the same food pattern but obese exhibit a notable difference in CVD. This variance might be explained by the various genetic polymorphisms which gave rise to the field of nutrigenetics. The discipline known as nutritional genomics, or nutrigenetics, examines and describes gene variants linked to varying reactions to particular nutrients and links these variations to various disorders, including obesity-related cardiovascular disease (CVD). Therefore, tailored nutrition advice depending on a person's genetic background could enhance the results of a particular dietary intervention and offer a novel dietary technique to enhance health by lowering obesity and cardiovascular disease. With these suppositions, it seems reasonable to assume that understanding food and gene interactions will provide more targeted and efficacious dietary treatments in preventing obesity and CVD by nutrigenetics-based personalized nutrition. In addition to elucidating the connection between diet and gene expression and the major nutrition-related genes involved in obesity and CVD, this research seeks to provide a concise summary of the greater significant genes linked to obesity and CVD.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Adulto , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Nutrigenômica , Obesidade/genética , Estado Nutricional
2.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474735

RESUMO

BACKGROUND: Obesity results from interactions between environmental factors, lifestyle, and genetics. In this scenario, nutritional genomics and nutrigenetic tests stand out, with the promise of helping patients avoid or treat obesity. This narrative review investigates whether nutrigenetic tests may help to prevent or treat obesity. Scientific studies in PubMed Science Direct were reviewed, focusing on using nutrigenetic tests in obesity. The work showed that few studies address the use of tools in obesity. However, most of the studies listed reported their beneficial effects in weight loss. Ethical conflicts were also discussed, as in most countries, there are no regulations to standardize these tools, and there needs to be more scientific knowledge for health professionals who interpret them. International Societies, such as the Academy of Nutrition and Dietetics and the Brazilian Association for the Study of Obesity and Metabolic Syndrome, do not recommend nutrigenetic tests to prevent or treat obesity, especially in isolation. Advancing nutrigenetics depends on strengthening three pillars: regulation between countries, scientific evidence with clinical validity, and professional training.


Assuntos
Dietética , Nutrigenômica , Humanos , Nutrigenômica/métodos , Estado Nutricional , Obesidade , Brasil
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396910

RESUMO

The Mediterranean diet features plant-based foods renowned for their health benefits derived from bioactive compounds. This review aims to provide an overview of the bioactive molecules present in some representative Mediterranean diet plants, examining their human nutrigenomic effects and health benefits as well as the environmental advantages and sustainability derived from their cultivation. Additionally, it explores the facilitation of producing fortified foods aided by soil and plant microbiota properties. Well-studied examples, such as extra virgin olive oil and citrus fruits, have demonstrated significant health advantages, including anti-cancer, anti-inflammatory, and neuroprotective effects. Other less renowned plants are presented in the scientific literature with their beneficial traits on human health highlighted. Prickly pear's indicaxanthin exhibits antioxidant properties and potential anticancer traits, while capers kaempferol and quercetin support cardiovascular health and prevent cancer. Oregano and thyme, containing terpenoids like carvacrol and γ-terpinene, exhibit antimicrobial effects. Besides their nutrigenomic effects, these plants thrive in arid environments, offering benefits associated with their cultivation. Their microbiota, particularly Plant Growth Promoting (PGP) microorganisms, enhance plant growth and stress tolerance, offering biotechnological opportunities for sustainable agriculture. In conclusion, leveraging plant microbiota could revolutionize agricultural practices and increase sustainability as climate change threatens biodiversity. These edible plant species may have crucial importance, not only as healthy products but also for increasing the sustainability of agricultural systems.


Assuntos
Dieta Mediterrânea , Humanos , Alimento Funcional , Nutrigenômica , Secas , Plantas Comestíveis
4.
Cell Rep ; 43(3): 113861, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416643

RESUMO

Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doenças Metabólicas , Lactente , Criança , Animais , Humanos , Nutrigenômica , Drosophila , Dieta , Doenças Metabólicas/genética
5.
Clin Nutr ESPEN ; 59: 29-36, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38220389

RESUMO

Chronic obstructivе pulmonary disеasе (COPD), a rеspiratory disеasе, is influenced by a combination of gеnеtic and еnvironmеntal factors. Thе fiеld of nutrigеnomics, which studiеs thе intеrplay bеtwееn diеt and gеnеs, provides valuable insights into thе gеnomic landscapе of COPD and its implications for production and managеmеnt. This rеviеw providеs a comprеhеnsivе ovеrviеw of thе gеnеtic aspеcts of COPD and thе rolе of nutrigеnomics in advancing our undеrstanding of thе undеrlying mеchanisms. Through studies of gеnomе-widе associations, researchers have identified gеnеtic factors that contribute to suscеptibility to COPD. Thеsе gеnеs arе associatеd with oxidativе strеss, inflammation, and antioxidant dеfеnsе mеchanisms. Nutrigеnomics rеsеarch is currеntly invеstigating how diеtary componеnts interact with gеnеtic variations to modulatе thе dеvеlopmеnt of COPD. Antioxidants, omеga-3 fatty acids and vitamin D havе dеmonstratеd potеntial bеnеfits in rеducing inflammation, improving lung function, and minimizing еxacеrbations in patients with COPD. Therefore, there are sеvеral challеngеs that must be added to the nutrigеnomic rеsеarch. The challenges include thе nееd for largеr clinical trials, adding hеtеrogеnеity and validating biomarkеrs. In the tеrms of futurе dirеctions, prеcision nutrition, gеnе-basеd thеrapiеs, biomarkеr dеvеlopmеnt, intеgration of multi-omics data, systеms biology analysis, longitudinal studiеs, and public hеalth implications arе important arеas to еxplorе. Pеrsonalizеd nutritional intеrvеntions based on an individual's gеnеtic profilе hold grеat promisе for optimizing COPD managеmеnt. In conclusion, nutrigеnomics provides valuable insights into the gеnomic landscapе of COPD and its intеraction with the disease. This knowlеdgе can guidе thе dеvеlopmеnt of pеrsonalizеd diеtary stratеgiеs and gеnе-basеd thеrapiеs for thе prеvеntion and managеmеnt of COPD. Howеvеr, morе rеsеarch is nееdеd to validatе thеsе findings, dеvеlop еffеctivе intеrvеntions, and implеmеnt thеm еffеctivеly in clinical practicе to improvе thе quality of lifе for pеoplе with COPD.


Assuntos
Nutrigenômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Qualidade de Vida , Genômica , Inflamação
6.
Hum Genomics ; 17(1): 109, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062537

RESUMO

The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.


Assuntos
Metabolômica , Nutrigenômica , Humanos , Estado Nutricional , Predisposição Genética para Doença , Estilo de Vida Saudável
8.
Clin Ter ; 174(Suppl 2(6)): 173-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994762

RESUMO

Abstract: Nutrients can influence the physiological processes in the body by interacting with molecular systems. Including nutrigenetics and nutrigenomics, nutritional genomics focuses on how bio-active food components interact with the genome. The purpose of this study is to clarify how nutrigenomics and vitamin dietary deficits relate to one another. Food tolerances among human sub-populations are known to vary due to genetic variation, which may also affect dietary needs. This raises the prospect of tailoring a person's nutritional intake for optimum health and illness prevention, based on their unique genome. To better understand the interplay between genes and nutrients and to plan tailored weight loss, nutrigenetic testing may soon become a key approach.


Assuntos
Nutrigenômica , Polimorfismo de Nucleotídeo Único , Humanos , Dieta , Vitaminas
9.
Clin Ter ; 174(Suppl 2(6)): 193-199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994764

RESUMO

Abstract: Nutrigenetics and nutrigenomics are two interrelated fields that explore the influence of genetic diversity on nutrient responses and function. While nutrigenetics investigates the effects of hereditary ge-netic variations on micronutrient metabolism, nutrigenomics examines the intricate relationship between diet and the genome, studying how genetic variants impact nutrient intake and gene expression. These disciplines offer valuable insights into predicting and managing chronic diseases through personalized nutritional approaches. Nutrigenomics employs cutting-edge genomics technologies to study nutrient-genome interactions. Key principles involve genetic variability among ethnic groups, affecting nutrient bioavailability and metabolism, and the influence of dietary choices based on cultural, geographic, and socioeconomic factors. Polymorphisms, particularly single-nucleotide polymorphisms (SNPs), significantly influence gene activity and are associated with specific phenotypes that are related to micronutrient deficiencies. Minerals are inorganic elements, vital for various physiological functions. Understanding the SNPs associated with mineral deficien-cies is crucial for assessing disease risk and developing personalized treatment plans. This knowledge can inform public health interventions, targeted screening programs, educational campaigns, and fortified food products to address deficiencies effectively. Nutrigenomics research has the potential to revolutionize clinical and nutritional practices, providing personalized recommendations, enhancing illness risk assessment, and advancing public health initiatives. Despite the need for further research, harnessing nutrigenomics' potential can lead to more focused and efficient methods for preventing and treating mineral deficiencies.


Assuntos
Nutrigenômica , Polimorfismo de Nucleotídeo Único , Humanos , Nutrigenômica/métodos , Dieta , Micronutrientes , Minerais
10.
Clin Ter ; 174(Suppl 2(6)): 200-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994765

RESUMO

Background: Nutrigenomics - the study of the interactions between genetics and nutrition - has emerged as a pivotal field in personalized nutrition. Among various genetic variations, single-nucleotide polymorphisms (SNPs) have been extensively studied for their probable relationship with metabolic traits. Methods: Throughout this review, we have employed a targeted research approach, carefully handpicking the most representative and relevant articles on the subject. Our methodology involved a systematic review of the scientific literature to ensure a comprehensive and accurate overview of the available sources. Results: SNPs have demonstrated a significant influence on lipid metabolism, by impacting genes that encode for enzymes involved in lipid synthesis, transport, and storage. Furthermore, they have the ability to affect enzymes in glycolysis and insulin signaling pathways: in a way, they can influence the risk of type 2 diabetes. Thanks to recent advances in genotyping technologies, we now know numerous SNPs linked to lipid and carbohydrate metabolism. The large-scale studies on this topic have unveiled the potential of personalized dietary recommendations based on an individual's genetic makeup. Personalized nutritional interventions hold promise to mitigate the risk of various chronic diseases; however, translating these scientific insights into actionable dietary guidelines is still challenging. Conclusions: As the field of nutrigenomics continues to evolve, collaborations between geneticists, nutritionists, and healthcare providers are essential to harness the power of genetic information for improving metabolic health. By unraveling the genetic basis of metabolic responses to diet, this field holds the potential to revolutionize how we approach dietary recommendations and preventive healthcare practices.


Assuntos
Diabetes Mellitus Tipo 2 , Nutrigenômica , Humanos , Polimorfismo de Nucleotídeo Único , Dieta , Lipídeos , Metabolismo dos Carboidratos
11.
Clin Ter ; 174(Suppl 2(6)): 183-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994763

RESUMO

Abstract: Nutrigenomics, a rapidly evolving field that bridges genetics and nutrition, explores the intricate interactions between an individual's genetic makeup and how they respond to nutrients. At its core, this discipline focuses on investigating Single Nucleotide Polymorphisms (SNPs), the most common genetic variations, which significantly influence a person's physiological status, mood regulation, and sleep patterns, thus playing a pivotal role in a wide range of health out-comes. Through decoding their functional implications, researchers are able to uncover genetic factors that impact physical fitness, pain perception, and susceptibility to mood disorders and sleep disruptions. The integration of nutrigenomics into healthcare holds the promise of transformative interventions that cater to individual well-being. Notable studies shed light on the connection between SNPs and personalized responses to exercise, as well as vulnerability to mood disorders and sleep disturbances. Understanding the intricate interplay between genetics and nutrition informs targeted dietary approaches, molding individual health trajectories. As research advances, the convergence of genetics and nourishment is on the brink of reshaping healthcare, ushering in an era of personalized health management that enhances overall life quality. Nutrigenomics charts a path toward tailored nutritional strategies, fundamentally reshaping our approach to health preservation and preventive measures.


Assuntos
Quiroprática , Nutrigenômica , Humanos , Polimorfismo de Nucleotídeo Único , Dieta , Exercício Físico
12.
Clin Ter ; 174(Suppl 2(6)): 209-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994766

RESUMO

Abstract: Nutritional genomics, also known as nutrigenomics, is the study of how a person's diet and genes interact with each other. The field of nutrigenomics aims to explain how common nutrients, food additives and preservatives can change the body's genetic balance towards either health or sickness. This study reviews the effects of SNPs on detoxification, antioxidant capacity, and longevity. SNPs are mutations that only change one nucleotide at a specific site in the DNA. Specific SNPs have been associated to a variety of biological processes, including detoxification, antioxidant capacity, and longevity. This article mainly focuses on the following genes: SOD2, AS3MT, CYP1A2, and ADO-RA2A (detoxification); LEPR, TCF7L2, KCNJ11, AMY1, and UCP3 (antioxidant capacity); FOXO3 and BPIFB4 (longevity). This review underlines that many genes-among which FOXO3, TCF7L2, LEPR, CYP1A2, ADORA2A, and SOD2-have a unique effect on a person's health, susceptibility to disease, and general well-being. Due to their important roles in numerous biological processes and their implications for health, these genes have undergone intensive research. Examining the SNPs in these genes can provide insight into how genetic variants affect individuals' responses to their environment, their likelihood of developing certain diseases, and their general state of health.


Assuntos
Longevidade , Nutrigenômica , Humanos , Longevidade/genética , Antioxidantes , Citocromo P-450 CYP1A2/genética , Polimorfismo de Nucleotídeo Único , Dieta , Metiltransferases/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética
13.
Clin Ter ; 174(Suppl 2(6)): 214-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994767

RESUMO

Background: Nutrigenomics explores the intricate interplay between single nucleotide polymorphisms (SNPs), food preferences, and susceptibilities. Methods: This study delves into the influence of SNPs on food sensitivities, allergies, tyramine intolerance, and taste preferences. Genetic factors intricately shape physiological reactions to dietary elements, with polymorphisms contributing to diverse sensitivities and immune responses. Results: Tyramine intolerance, arising from metabolic inefficiencies, unveils genetic markers exerting influence on enzyme function. SNPs transcend genetic diversity by exerting substantial impact on food sensitivities/allergies, with specific variants correlating to heightened susceptibilities. Genes accountable for digesting food components play pivotal roles. Given the rising prevalence of food sensitivities/allergies, understanding genetic foundations becomes paramount. In the realm of taste and food preferences, SNPs sculpt perception and choice, yielding variances in taste perception and preferences for sweetness, bitterness, and umami. This genetic medley extends its reach to encompass wider health implications. Conclusions: In this review article, we have focused on how polymorphisms wield significant sway over physiological responses, sensitivities, and dietary inclinations. Unraveling these intricate relationships illuminates the path to personalized nutrition, potentially revolutionizing tailored recommendations and interventions.


Assuntos
Preferências Alimentares , Hipersensibilidade , Humanos , Preferências Alimentares/fisiologia , Polimorfismo de Nucleotídeo Único , Nutrigenômica , Tiramina
14.
Genes (Basel) ; 14(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38002923

RESUMO

The Mediterranean diet (MedD) has been shown to have beneficial effects on health, well-being, and mental status. It potentially modulates gene expressions linked to oxidative stress, contributing to its beneficial effects on overall health. The aim of this study was to assess the effects of MedD treatment in healthy human volunteers on the expression of ten genes related to oxidative stress and inflammation in women and men. Of 30 enrolled subjects, 17 were eligible, 10 women and 7 men. All of them received the same MedD treatment. Before and after 8 weeks of MedD treatment, an evaluation of body composition, blood tests, and anthropometric and clinical parameters was performed. Furthermore, 10 genes were amplified and analyzed. The study showed significant differences between females and males in body composition and biochemical parameters before and after MedD treatment. Significant differences between females and males in Resistance Force (p < 0.009) and Diastolic Blood Pressure (p < 0.04) before MedD treatment, and in High-Density Lipoprotein (p < 0.02) after MedD treatment, were observed. Moreover, a significant upregulation of Apolipoprotein E and Angiotensin I-Converting Enzyme in females has been shown. Sex differences impact MedD treatment response, and influence the genetic expression of genes related to oxidative stress; our findings may help to personalize diet therapy and contribute to overall health and well-being.


Assuntos
Dieta Mediterrânea , Humanos , Masculino , Feminino , Projetos Piloto , Nutrigenômica , Caracteres Sexuais , Estresse Oxidativo
15.
Nutr. res ; 119: 21-32, nov.2023. ilus
Artigo em Inglês | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1525282

RESUMO

Polymorphisms in genes of leptin-melanocortin and insulin pathways have been associated with obesity and type 2 diabetes. We hypothesized that polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory markers and food intake composition in Brazilian subjects. This exploratory pilot study included 358 adult subjects. Clinical, anthropometric, and laboratory data were obtained through interview and access to medical records. The variants IRS1 rs2943634 A˃C, IRS2 rs1865434 C>T, MC3R rs3746619 C>A, and MC4R rs17782313 T>C were analyzed by real-time polymerase chain reaction. Food intake composition was assessed in a group of subjects with obesity (n = 84) before and after a short-term nutritional counseling program (9 weeks). MC4R rs17782313 was associated with increased risk of obesity (P = .034). Multivariate linear regression analysis adjusted by covariates indicated associations of IRS2 rs1865434 with reduced low-density lipoprotein cholesterol and resistin, MC3R rs3746619 with high glycated hemoglobin, and IRS1 rs2943634 and MC4R rs17782313 with increased high-sensitivity C-reactive protein (P < .05). Energy intake and carbohydrate and total fat intakes were reduced after the diet-oriented program (P < .05). Multivariate linear regression analysis showed associations of IRS2 rs1865434 with high basal fiber intake, IRS1 rs2943634 with low postprogram carbohydrate intake, and MC4R rs17782313 with low postprogram total fat and saturated fatty acid intakes (P < .05). Although significant associations did not survive correction for multiple comparisons using the Benjamini-Hochberg method in this exploratory study, polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory status in Brazilian adults. IRS1 and MC4R variants may influence carbohydrate, total fat, and saturated fatty acid intakes in response to a diet-oriented program in subjects with obesity.


Assuntos
Polimorfismo Genético , Diabetes Mellitus , Nutrigenômica , Proteínas Substratos do Receptor de Insulina , Obesidade , Carboidratos , Projetos Piloto , Ingestão de Alimentos , Melanocortinas , Ácidos Graxos
16.
Clin Nutr ; 42(11): 2181-2187, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788561

RESUMO

BACKGROUND & AIMS: The Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 single nucleotide polymorphism (SNP) is one of the major genetic determinant of non-alcoholic fatty liver disease (NAFLD) and is strongly regulated by changes in energy balance and dietary factors. We aimed to investigate the association between the PNPLA3 rs738409 SNP, nutrient intake and NAFLD severity. METHOD: PNPLA3-rs738409 SNP was genotyped in 181 patients with NAFLD who completed the EPIC Food Frequency Questionnaire. Liver steatosis was evaluated by Controlled Attenuation Parameter (CAP) (Fibroscan®530, Echosens). According to the established cut-off, a CAP value ≥ 300 dB/m was used to identify severe steatosis (S3). An independent group of 46 biopsy-proven NAFLD subjects was used as validation cohort. RESULTS: Overall, median age was 53 years (range 44; 62) and 60.2% of patients were male. Most subjects (56.3%) had S3 and showed increased liver stiffness (p < 0.001), AST (p = 0.003) and ALT levels (p < 0.001) compared to those with CAP<300 dB/m. At logistic regression analyses we found that the interaction between carbohydrates intake and the carriers of the PNPLA3 G risk allele was significantly associated with S3 (p = 0.001). The same result was confirmed in the validation cohort, were the interaction between high carbohydrate intake (48%) and PNPLA3 SNP was significantly associated with steatosis ≥33% (p = 0.038). CONCLUSION: The intake of greater than or equal to 48% carbohydrate in NAFLD patients carriers of the CG/GG allele of PNPLA3 rs738409 may increase the risk of significant steatosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Adulto , Feminino , Hepatopatia Gordurosa não Alcoólica/genética , Nutrigenômica , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Carboidratos , Predisposição Genética para Doença , Fígado
17.
Nutrients ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37892400

RESUMO

The pathogenesis of obesity and dyslipidemia involves genetic factors, such as polymorphisms related to lipid metabolism alterations predisposing their development. This study aimed to evaluate the effect of a nutrigenetic intervention on the blood lipid levels, body composition, and inflammation markers of adults with obesity and overweight. Eleven genetic variants associated with dyslipidemias in Mexicans were selected, and specific nutrigenetic recommendations for these polymorphisms were found. One hundred and one adults were recruited and assigned to follow either a standard or nutrigenetic diet for eight weeks. Anthropometric, biochemical, body composition, and inflammation markers were evaluated through standardized methods. Weighted genetic risk scores (wGRSs) were computed using the study polymorphisms. After intervention, both diets significantly decreased the anthropometric parameters and body composition (p < 0.05). Only the nutrigenetic diet group showed significant reductions in VLDL-c (p = 0.001), triglycerides (p = 0.002), TG:HDL (p = 0.002), IL-6 (p = 0.002), and TNF-α (p = 0.04). wGRSs had a high impact on the ΔTGs and ΔVLDL-c of both groups (standard diet: ΔTGs: Adj R2 = 0.69, p = 0.03; ΔVLDL-c: Adj R2 = 0.71, p = 0.02; nutrigenetic diet: ΔTGs: Adj R2 = 0.49, p = 0.03 and ΔVLDL-c: R2 = 0.29, p = 0.04). This nutrigenetic intervention improved lipid abnormalities in patients with excessive body weight. Hence, nutrigenetic strategies could be coadjuvant tools and enhance the standard dietary treatment for cardiometabolic diseases.


Assuntos
Nutrigenômica , Sobrepeso , Humanos , Adulto , Sobrepeso/complicações , Obesidade , Peso Corporal , Lipídeos , Inflamação
18.
Free Radic Biol Med ; 209(Pt 2): 239-251, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37866756

RESUMO

The term 'vitamin C' describes a group of compounds with antiscorbutic activity of l-ascorbic acid (AA). Despite AA's omnipresence in plant-derived foods, its derivatives have also been successfully implemented in the food industry as antioxidants, including the D-isomers, which lack vitamin C activity. This study aimed to determine the relationship between redox-related activities for five derivatives of AA using electrochemical, chemical, and biological approaches. Here we report that AA, C-vitamers, and other commonly consumed AA derivatives differ in their redox-related activities. As long as the physiological range of concentrations was maintained, there was no simple relationship between their redox properties and biological activity. Clear distinctions in antioxidant activity were observed mostly at high concentrations, which were strongly correlated with electrochemical and kinetic parameters describing redox-related properties of the studied compounds. Despite obvious similarities in chemical structures and antioxidant activity, we showed that C-vitamers may exhibit different nutrigenomic effects. Together, our findings provide a deeper insight into so far underinvestigated area combining chemical properties with biological activities of commonly applied AA derivatives.


Assuntos
Antioxidantes , Ácido Ascórbico , Antioxidantes/farmacologia , Nutrigenômica , Vitaminas , Cinética
19.
Neuroscience ; 533: 77-95, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37858629

RESUMO

Parkinson's disease is the most prevalent chronic neurodegenerative disease. Neurological conditions for PD were influenced by a variety of epigenetic factors and SNPs in some of the coexisting genes that were expressed. This article focused on nutrigenomics of PD and the prospective highlighting of how these genes are regulated in terms of nutritive factors and the genetic basis of PD risk, onset, and progression. Multigenetic associations of the following genetic alterations in the genes of SNCA, LRRK2, UCHL1, PARK2,PINK1, DJ-1, and ATP13A2 have been reported with the familial and de novo genetic origins of PD. Over the past two decades, significant attempts have been made to understand the biological mechanisms that are potential causes for this disease, as well as to identify therapeutic substances for the prevention and management of PD. Nutrigenomics has sparked considerable interest due to its nutritional, safe, and therapeutic effects on a variety of chronic diseases. In this study, we summarise some of the nutritive supplements that have an impact on PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Nutrigenômica , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...