Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.311
Filtrar
1.
J Orthop Surg Res ; 19(1): 243, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622659

RESUMO

Inflammatory reactions are involved in the development of steroid-induced osteonecrosis of the femoral head(ONFH). Studies have explored the therapeutic efficacy of inhibiting inflammatory reactions in steroid-induced ONFH and revealed that inhibiting inflammation may be a new strategy for preventing the development of steroid-induced ONFH. Exosomes derived from M2 macrophages(M2-Exos) display anti-inflammatory properties. This study aimed to examine the preventive effect of M2-Exos on early-stage steroid-induced ONFH and explore the underlying mechanisms involved. In vitro, we explored the effect of M2-Exos on the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells(BMMSCs). In vivo, we investigated the role of M2-Exos on inflammation, osteoclastogenesis, osteogenesis and angiogenesis in an early-stage rat model of steroid-induced ONFH. We found that M2-Exos promoted the proliferation and osteogenic differentiation of BMMSCs. Additionally, M2-Exos effectively attenuated the osteonecrotic changes, inhibited the expression of proinflammatory mediators, promoted osteogenesis and angiogenesis, reduced osteoclastogenesis, and regulated the polarization of M1/M2 macrophages in steroid-induced ONFH. Taken together, our data suggest that M2-Exos are effective at preventing steroid-induced ONFH. These findings may be helpful for providing a potential strategy to prevent the development of steroid-induced ONFH.


Assuntos
Reabsorção Óssea , Exossomos , Necrose da Cabeça do Fêmur , Osteonecrose , Ratos , Animais , Osteogênese , Exossomos/metabolismo , Cabeça do Fêmur/metabolismo , Osteonecrose/prevenção & controle , Inflamação/metabolismo , Macrófagos/metabolismo , Esteroides/efeitos adversos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/prevenção & controle , Necrose da Cabeça do Fêmur/metabolismo
2.
Med Eng Phys ; 126: 104159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621833

RESUMO

Generation of polyethylene wear debris and peri­prosthetic bone resorption have been identified as potential causes of acetabular component loosening in Total Hip Arthroplasty. This study was aimed at optimization of a functionally graded porous acetabular component to minimize peri­prosthetic bone resorption and polyethylene liner wear. Porosity levels (porosity values at acetabular rim, and dome) and functional gradation exponents (radial and polar) were considered as the design parameters. The relationship between porosity and elastic properties were obtained from numerical homogenization. The multi-objective optimization was carried out using a non-dominated sorting genetic algorithm integrated with finite element analysis of the hemipelvises subject to various loading conditions of common daily activities. The optimal functionally graded porous designs (OFGPs -1, -2, -3, -4, -5) exhibited less strain-shielding in cancellous bone compared to solid metal-backing. Maximum bone-implant interfacial micromotions (63-68 µm) for OFGPs were found to be close to that of solid metal-backing (66 µm), which might facilitate bone ingrowth. However, OFGPs exhibited an increase in volumetric wear (3-10 %) compared to solid metal-backing. The objective functions were found to be more sensitive to changes in polar gradation exponent than radial gradation exponent, based on the Sobol' method. Considering the common failure mechanisms, OFGP-1, having highly porous acetabular rim and less porous dome, appears to be a better alternative to the solid metal-backing.


Assuntos
Artroplastia de Quadril , Reabsorção Óssea , Prótese de Quadril , Humanos , Porosidade , Acetábulo/cirurgia , Metais , Polietileno , Reabsorção Óssea/cirurgia , Algoritmos , Desenho de Prótese , Falha de Prótese
3.
Front Immunol ; 15: 1168323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566990

RESUMO

Background: Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells with immunosuppressive functions. It is known that MDSCs are expanded at inflammatory sites after migrating from bone marrow (BM) or spleen (Sp). In chronic inflammatory diseases such as rheumatoid arthritis (RA), previous reports indicate that MDSCs are increased in BM and Sp, but detailed analysis of MDSCs in inflamed joints is very limited. Objective: The purpose of this study is to characterize the MDSCs in the joints of mice with autoimmune arthritis. Methods: We sorted CD11b+Gr1+ cells from joints (Jo), bone marrow (BM) and spleen (Sp) of SKG mice with zymosan (Zym)-induced arthritis and investigated differentially expressed genes (DEGs) by microarray analysis. Based on the identified DEGs, we assessed the suppressive function of CD11b+Gr1+ cells from each organ and their ability to differentiate into osteoclasts. Results: We identified MDSCs as CD11b+Gr1+ cells by flow cytometry and morphological analysis. Microarray analysis revealed that Jo-CD11b+Gr1+ cells had different characteristics compared with BM-CD11b+Gr1+ cells or Sp-CD11b+Gr1+ cells. Microarray and qPCR analysis showed that Jo-CD11b+Gr1+ cells strongly expressed immunosuppressive DEGs (Pdl1, Arg1, Egr2 and Egr3). Jo-CD11b+Gr1+ cells significantly suppressed CD4+ T cell proliferation and differentiation in vitro, which confirmed Jo-CD11b+Gr1+ cells as MDSCs. Microarray analysis also revealed that Jo-MDSCs strongly expressed DEGs of the NF-κB non-canonical pathway (Nfkb2 and Relb), which is relevant for osteoclast differentiation. In fact, Jo-MDSCs differentiated into osteoclasts in vitro and they had bone resorptive function. In addition, intra-articular injection of Jo-MDSCs promoted bone destruction. Conclusions: Jo-MDSCs possess a potential to differentiate into osteoclasts which promote bone resorption in inflamed joints, while they are immunosuppressive in vitro.


Assuntos
Artrite , Reabsorção Óssea , Células Supressoras Mieloides , Camundongos , Animais , Osteoclastos , Células Mieloides , Reabsorção Óssea/metabolismo , Artrite/metabolismo
4.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587386

RESUMO

This protocol details the propagation and passaging of human iPSCs and their differentiation into osteoclasts. First, iPSCs are dissociated into a single-cell suspension for further use in embryoid body induction. Following mesodermal induction, embryoid bodies undergo hematopoietic differentiation, producing a floating hematopoietic cell population. Subsequently, the harvested hematopoietic cells undergo a macrophage colony-stimulating factor maturation step and, finally, osteoclast differentiation. After osteoclast differentiation, osteoclasts are characterized by staining for TRAP in conjunction with a methyl green nuclear stain. Osteoclasts are observed as multinucleated, TRAP+ polykaryons. Their identification can be further supported by Cathepsin K staining. Bone and mineral resorption assays allow for functional characterization, confirming the identity of bona fide osteoclasts. This protocol demonstrates a robust and versatile method to differentiate human osteoclasts from iPSCs and allows for easy adoption in applications requiring large quantities of functional human osteoclasts. Applications in the areas of bone research, cancer research, tissue engineering, and endoprosthesis research could be envisioned.


Assuntos
Reabsorção Óssea , Células-Tronco Pluripotentes Induzidas , Humanos , Osteoclastos , Diferenciação Celular , Fator Estimulador de Colônias de Macrófagos/farmacologia , Osso e Ossos , Glicoproteínas de Membrana , Ligante RANK
5.
Sci Rep ; 14(1): 8153, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589566

RESUMO

Osteoporosis is usually caused by excessive bone resorption and energy metabolism plays a critical role in the development of osteoporosis. However, little is known about the role of energy metabolism-related genes in osteoporosis. This study aimed to explore the important energy metabolism-related genes involved in the development of osteoporosis and develop a diagnosis signature for osteoporosis. The GSE56814, GSE62402, and GSE7158 datasets were downloaded from the NCBI Gene Expression Omnibus. The intersection of differentially expressed genes between high and low levels of body mineral density (BMD) and genes related to energy metabolism were screened as differentially expressed energy metabolism genes (DE-EMGs). Subsequently, a DE-EMG-based diagnostic model was constructed and differential expression of genes in the model was validated by RT-qPCR. Furthermore, a receiver operating characteristic curve and nomogram model were constructed to evaluate the predictive ability of the diagnostic model. Finally, the immune cell types in the merged samples and networks associated with the selected optimal DE-EMGs were constructed. A total of 72 overlapped genes were selected as DE-EMGs, and a five DE-EMG based diagnostic model consisting B4GALT4, ADH4, ACAD11, B4GALT2, and PPP1R3C was established. The areas under the curve of the five genes in the merged training dataset and B4GALT2 in the validation dataset were 0.784 and 0.790, respectively. Moreover, good prognostic prediction ability was observed using the nomogram model (C index = 0.9201; P = 5.507e-14). Significant differences were observed in five immune cell types between the high- and low-BMD groups. These included central memory, effector memory, and activated CD8 T cells, as well as regulatory T cells and activated B cells. A network related to DE-EMGs was constructed, including hsa-miR-23b-3p, DANCR, 17 small-molecule drugs, and two Kyoto Encyclopedia of Genes and Genomes pathways, including metabolic pathways and pyruvate metabolism. Our findings highlighted the important roles of DE-EMGs in the development of osteoporosis. Furthermore, the DANCR/hsa-miR-23b-3p/B4GALT4 axis might provide novel molecular insights into the process of osteoporosis development.


Assuntos
Reabsorção Óssea , MicroRNAs , Osteoporose , Humanos , Linfócitos B , Osteoporose/diagnóstico , Osteoporose/genética , Metabolismo Energético/genética
6.
Elife ; 132024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591777

RESUMO

Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Reabsorção Óssea/metabolismo , Remodelação Óssea , Osteogênese/fisiologia , Diferenciação Celular/fisiologia
7.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 163-171, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597076

RESUMO

OBJECTIVES: To investigate the mechanism of circadian clock protein Bmal1 (Bmal1) on renal injury with chronic periodontitis, we established an experimental rat periodontitis model. METHODS: Twelve male Wistar rats were randomly divided into control and periodontitis groups (n=6, each group). The first maxillary molars on both sides of the upper jaw of rats with periodontitis were ligated by using orthodontic ligature wires, whereas the control group received no intervention measures. After 8 weeks, clinical periodontal parameters, including probing depth, bleeding index, and tooth mobility, were evaluated in both groups. Micro-CT scanning and three-dimensional image reconstruction were performed on the maxillary bones of the rats for the assessment of alveolar bone resorption. Histopatholo-gical observations of periodontal and renal tissues were conducted using hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining. Renal function indicators, such as creatinine, albumin, and blood urea nitrogen levels, and oxidative stress markers, including superoxide dismutase, glutathione, and malondialdehyde levels, were measured using biochemical assay kits. MitoSOX red staining was used to detect reactive oxygen species (ROS) content in the kidneys. The gene and protein expression levels of Bmal1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in rat renal tissues were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining. RESULTS: Micro-CT and HE staining results showed significant bone resorption and attachment loss in the maxillary first molar region of the periodontitis group. Histological examination through HE and PAS staining revealed substantial histopathological damage to the renal tissues of the rats in the periodontitis group. The findings of the assessment of renal function and oxidative stress markers indicated that the periodontitis group exhibited abnormal levels of oxidative stress, whereas the renal function levels showed abnormalities without statistical significance. MitoSOX Red staining results showed that the content of ROS in the renal tissue of the periodontitis group was significantly higher than that of the control group, and RT-qPCR and immunohistochemistry results showed that the expression levels of Bmal1, Nrf2, and HO-1 in the renal tissues of the rats in the periodontitis group showed a decreasing trend. CONCLUSIONS: Circadian clock protein Bmal1 plays an important role in the oxidative damage process involved in the renal of rats with periodontitis.


Assuntos
Reabsorção Óssea , Relógios Circadianos , Compostos Organofosforados , Periodontite , Fenantridinas , Ratos , Masculino , Animais , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Periodontite/metabolismo , Estresse Oxidativo , Rim/metabolismo , Rim/patologia , Reabsorção Óssea/metabolismo
8.
Acta Odontol Scand ; 83: 132-139, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597918

RESUMO

OBJECTIVE: Knowledge about oral hygiene, gingival bleeding, mineral density, and resorption of jaw bones in patients with hemophilia is limited. We evaluated the periodontal and bone status in such patients.  Material and methods: Forty-eight patients with severe type A/B hemophilia and 49 age- and sex-matched controls were included. Assessments included simplified oral hygiene index (OHI-S), calculus index, debris index, gingival index (GI), gingival bleeding time index (GBTI), and decayed, missing, and filled teeth index (DMFTI). Bone resorption was evaluated using panoramic mandibular index (PMI), mental index (MI), and alveolar crest ratio (ACR). Mineral density in the condyle, angulus, and premolar areas was assessed using fractal analysis, with fractal dimensions denoted as condyle fractal dimension (CFD) for the condyle, angulus fractal dimension (AFD) for angulus, and premolar fractal dimension (PFD) for premolar region. RESULTS: The mean scores were DMFTI = 11.77, OHI-S = 2.44, PMI = 0.268, MI = 5.822, GI = 3.02, GBTI = 2.64, ACR = 2.06, CFD = 1.31, AFD = 1.31, and PFD = 1.17 in the hemophilia group and DMFTI = 11.449, PMI = 0.494, MI = 7.43, GI = 0.67, GBTI = 0.98, OHI-S = 1.45, ACR = 2.87, CFD = 1.35, AFD = 1.35, and PDF = 1.23 in the control group. Differences were significant for all parameters (p < 0.005) except for the DMFTI index.  Conclusions: Because of poor oral hygiene, high bone resorption, and low bone mineral density in these patients, clinicians should consider potential bone changes when planning to treat these patients.


Assuntos
Reabsorção Óssea , Hemofilia A , Humanos , Densidade Óssea , Saúde Bucal , Hemofilia A/complicações , Estudos de Casos e Controles , Minerais
9.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604070

RESUMO

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Assuntos
Reabsorção Óssea , Sizofirano , Humanos , Osteoclastos/metabolismo , Sizofirano/metabolismo , Sizofirano/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Osteogênese , Ligante RANK/metabolismo
10.
Proc Biol Sci ; 291(2021): 20232738, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628118

RESUMO

Midfacial morphology varies between hominoids, in particular between great apes and humans for which the face is small and retracted. The underlying developmental processes for these morphological differences are still largely unknown. Here, we investigate the cellular mechanism of maxillary development (bone modelling, BM), and how potential changes in this process may have shaped facial evolution. We analysed cross-sectional developmental series of gibbons, orangutans, gorillas, chimpanzees and present-day humans (n = 183). Individuals were organized into five age groups according to their dental development. To visualize each species's BM pattern and corresponding morphology during ontogeny, maps based on microscopic data were mapped onto species-specific age group average shapes obtained using geometric morphometrics. The amount of bone resorption was quantified and compared between species. Great apes share a highly similar BM pattern, whereas gibbons have a distinctive resorption pattern. This suggests a change in cellular activity on the hominid branch. Humans possess most of the great ape pattern, but bone resorption is high in the canine area from birth on, suggesting a key role of canine reduction in facial evolution. We also observed that humans have high levels of bone resorption during childhood, a feature not shared with other apes.


Assuntos
Reabsorção Óssea , Hominidae , Animais , Humanos , Hominidae/anatomia & histologia , Hylobates , Estudos Transversais , Gorilla gorilla , Pan troglodytes , Morfogênese , Evolução Biológica
11.
J Nanobiotechnology ; 22(1): 153, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580995

RESUMO

BACKGROUND: Osteoporosis is characterized by an imbalance in bone homeostasis, resulting in the excessive dissolution of bone minerals due to the acidified microenvironment mediated by overactive osteoclasts. Oroxylin A (ORO), a natural flavonoid, has shown potential in reversing osteoporosis by inhibiting osteoclast-mediated bone resorption. The limited water solubility and lack of targeting specificity hinder the effective accumulation of Oroxylin A within the pathological environment of osteoporosis. RESULTS: Osteoclasts' microenvironment-responsive nanoparticles are prepared by incorporating Oroxylin A with amorphous calcium carbonate (ACC) and coated with glutamic acid hexapeptide-modified phospholipids, aiming at reinforcing the drug delivery efficiency as well as therapeutic effect. The obtained smart nanoparticles, coined as OAPLG, could instantly neutralize acid and release Oroxylin A in the extracellular microenvironment of osteoclasts. The combination of Oroxylin A and ACC synergistically inhibits osteoclast formation and activity, leading to a significant reversal of systemic bone loss in the ovariectomized mice model. CONCLUSION: The work highlights an intelligent nanoplatform based on ACC for spatiotemporally controlled release of lipophilic drugs, and illustrates prominent therapeutic promise against osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Osteoclastos , Nanomedicina , Osteoporose/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/patologia , Diferenciação Celular
12.
Sci Rep ; 14(1): 8109, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582757

RESUMO

Bone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown. Here, we show that although the absence of Hem1 promotes osteoclastogenesis, the ability of Hem1-/- osteoclasts to degrade bone was severely impaired. Global as well as osteoclast-specific deletion of Hem1 in vivo revealed increased femoral trabecular bone mass despite elevated numbers of osteoclasts in vivo. We found that the resorption defect derived from the morphological distortion of the actin-rich sealing zone and ruffled border deformation in Hem1-deficient osteoclasts leading to impaired vesicle transport and increased intracellular acidification. Collectively, our data identify Hem1 as a yet unknown key player in bone remodeling by regulating ruffled border formation and consequently the resorptive capacity of osteoclasts.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Actinas/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Osteogênese
14.
Life Sci ; 345: 122592, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554947

RESUMO

Osteoporosis, characterized by bone metabolism disruption leading to gradual bone loss and increased fracture susceptibility, is linked to the excessive activation of osteoclasts. Pseudolaric acid B (PAB), identified as an NF-κB signaling inhibitor crucial for osteoclastogenesis, is explored here for its protective effects in osteoporosis. Noncytotoxic PAB's impact on osteoclast differentiation was assessed through cell viability and osteoclast formation assays, with subsequent testing of osteoclast function via bone resorption assays. Quantitative real-time polymerase chain reaction evaluated PAB's genetic-level impact on osteoclastogenesis. Network pharmacology, western blot, and luciferase reporter gene assays were employed to elucidate PAB's regulatory mechanism. In an in vivo model of osteoporosis induced by ovariectomy (OVX) in mice, micro-CT, H&E staining, and TRAP staining facilitated histomorphometry analysis, while flow cytometry verified macrophage polarization. PAB demonstrated inhibitory effects on osteoclast formation and bone resorption in BMM and RAW264.7 cells, suppressing osteoclast-specific genes. Bioinformatic analysis, western blot, and luciferase assay results indicated PAB's inhibition of IκBα phosphorylation in the NF-κB signaling pathway and ERK in MAPKs, elucidating its mechanism. In vivo experiments confirmed PAB's attenuation of osteoporosis by reducing osteoclast formation in OVX mice. PAB further facilitated macrophage conversion from M1 to M2 and suppressed IL-1ß, TNF-α, and IL-6 synthesis. In conclusion, PAB prevents osteoporosis by inhibiting RANKL-induced osteoclastogenesis through NF-κB and ERK signaling pathway suppression, coupled with macrophage polarization. These findings indicate the potential therapeutic role of PAB in osteoporosis.


Assuntos
Reabsorção Óssea , Diterpenos , Osteoporose , Feminino , Camundongos , Animais , Humanos , Osteoclastos , NF-kappa B/metabolismo , Diferenciação Celular , Transdução de Sinais , Macrófagos/metabolismo , Reabsorção Óssea/metabolismo , Osteogênese , Osteoporose/metabolismo , Luciferases/metabolismo , Ligante RANK/metabolismo , Ovariectomia
15.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 499-512, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439665

RESUMO

Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite , Humanos , Osteoclastos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Reabsorção Óssea/metabolismo , Remodelação Óssea/fisiologia , Cartilagem Articular/metabolismo
16.
Sci Rep ; 14(1): 7358, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548807

RESUMO

Cathepsin K (CatK), an essential collagenase in osteoclasts (OCs), is a potential therapeutic target for the treatment of osteoporosis. Using live-cell imaging, we monitored the bone resorptive behaviour of OCs during dose-dependent inhibition of CatK by an ectosteric (Tanshinone IIA sulfonate) and an active site inhibitor (odanacatib). CatK inhibition caused drastic reductions in the overall resorption speed of OCs. At IC50 CatK-inhibitor concentration, OCs reduced about 40% of their trench-forming capacity and at fourfold IC50 concentrations, a > 95% reduction was observed. The majority of CatK-inhibited OCs (~ 75%) were involved in resorption-migration-resorption episodes forming adjacent pits, while ~ 25% were stagnating OCs which remained associated with the same excavation. We also observed fusions of OCs during the resorption process both in control and inhibitor-treated conditions, which increased their resorption speeds by 30-50%. Inhibitor IC50-concentrations increased OC-fusion by twofold. Nevertheless, more fusion could not counterweigh the overall loss of resorption activity by inhibitors. Using an activity-based probe, we demonstrated the presence of active CatK at the resorbing front in pits and trenches. In conclusion, our data document how OCs respond to CatK-inhibition with respect to movement, bone resorption activity, and their attempt to compensate for inhibition by activating fusion.


Assuntos
Conservadores da Densidade Óssea , Reabsorção Óssea , Osteoporose , Humanos , Osteoclastos , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/tratamento farmacológico , Osteoporose/tratamento farmacológico , Catepsina K
17.
Medicina (Kaunas) ; 60(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541234

RESUMO

Background and Objectives: Periodontitis is marked by the destruction of alveolar bone. Sclerostin (SOST) and dickkopf-1 (DKK-1) act as inhibitors of the Wingless-type (Wnt) signaling pathway, a key regulator of bone metabolism. Recent studies have suggested that statins play a role in bone resorption and formation by influencing Wnt signaling. The aim of this study was to determine the levels of SOST and DKK-1 in periodontal patients with and without peroral statins treatment in their therapy. Materials and Methods: A total of 79 patients with diagnosed periodontitis were divided into two groups: 39 patients on statin therapy (SP group) and 40 patients without statin therapy as a control group (P group). The periodontal clinical examination probing (pocket) depth (PD) and gingival recession (GR) were measured, and approximal plaque was detected, while vertical and horizontal bone resorption was measured using a panoramic radiograph image. Clinical attachment loss (CAL) values were calculated using PD and GR values. Gingival crevicular fluid (GCF) was collected and used for measuring SOST and DKK-1 levels. A questionnaire was used to assess lifestyle habits and statin intake. Patients' medical records were used to obtain biochemical parameters. Results: There was no significant difference in sclerostin concentration between the SP and P group. DKK-1 values were significantly higher in the SP group compared to the control group (p = 0.04). Also, PD (p = 0.001) and GR (p = 0.03) were significantly higher in the SP group. The level of DKK-1 had a positive relationship with the PD, the greater the PD, the higher the level of DKK-1 (Rho = 0.350), while there was no significant association with other parameters. Conclusions: Peroral statins in periodontal patients are associated with GCF levels of DKK-1 but not with sclerostin levels.


Assuntos
Reabsorção Óssea , Inibidores de Hidroximetilglutaril-CoA Redutases , Periodontite , Humanos , Líquido do Sulco Gengival , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Periodontite/tratamento farmacológico , Bolsa Periodontal/terapia
18.
Chin J Nat Med ; 22(3): 212-223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553189

RESUMO

Cyathulae Radix, a traditional Chinese medicine and a common vegetable, boasts a history spanning millennia. It enhances bone density, boosts metabolism, and effectively alleviates osteoporosis-induced pain. Despite its historical use, the molecular mechanisms behind Cyathulae Radix's impact on osteoporosis remain unexplored. In this study, we investigated the effects and mechanisms of Cyathulae Radix ethanol extract (CEE) in inhibiting osteoporosis and osteoclastogenesis. Eight-week-old female mice underwent ovariectomy and were treated with CEE for eight weeks. Micro-computed tomography (micro-CT) assessed histomorphometric parameters, bone tissue staining observed distal femur histomorphology, and three-point bending tests evaluated tibia mechanical properties. Enzyme-linked immunosorbent assay (ELISA) measured serum estradiol (E2), receptor activator for nuclear factor B ligand (RANKL), and osteoprotegerin (OPG) levels. Osteoclastogenesis-related markers were analyzed via Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, CEE effects on RANKL-induced osteoclast formation and bone resorption were investigated in vitro using tartrate-resistant acid phosphatase (TRAP) staining, qRT-PCR, and WB assay. Compared with the ovariectomy (OVX) group, CEE treatment enhanced trabecular bone density, maximal load-bearing capacity, and various histomorphometric parameters. Serum E2 and OPG levels significantly increased, while Receptor activator of nuclear factor-κB (RANK) decreased in the CEE group. CEE downregulated matrix metallopeptidase 9 (MMP-9), Cathepsin K (CTSK), and TRAP gene and protein expression. In bone marrow macrophages (BMMs), CEE reduced mature osteoclasts, bone resorption pit areas, and MMP-9, CTSK, and TRAP expression during osteoclast differentiation. Compared with DMSO treatment, CEE markedly inhibited RANK, TNF receptor associated factor 6 (TRAF6), Proto-oncogene c-Fos (c-Fos), Nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) expressions, and Extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), NF-kappa B-p65 (p65) phosphorylation in osteoclasts. In conclusion, CEE significantly inhibits OVX-induced osteoporosis and RANKL-induced osteoclastogenesis, potentially through modulating the Estrogen Receptor (ER)/RANK/NFATc1 signaling pathway.


Assuntos
Reabsorção Óssea , Osteoporose , Feminino , Camundongos , Animais , Humanos , Osteoclastos/metabolismo , Microtomografia por Raio-X , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osteoporose/tratamento farmacológico , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Diferenciação Celular , NF-kappa B/genética , NF-kappa B/metabolismo , Ovariectomia
19.
Sci Rep ; 14(1): 7290, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538704

RESUMO

Bone destruction, a major source of morbidity, is mediated by heightened differentiation and activity of osteoclasts (OC), highly specialized multinucleated myeloid cells endowed with unique bone-resorptive capacity. The molecular mechanisms regulating OC differentiation in the bone marrow are still partly elusive. Here, we aimed to identify new regulatory circuits and actionable targets by comprehensive proteomic characterization of OCgenesis from mouse bone marrow monocytes, adopting two parallel unbiased comparative proteomic approaches. This work disclosed an unanticipated protein signature of OCgenesis, with most gene products currently unannotated in bone-related functions, revealing broad structural and functional cellular reorganization and divergence from macrophagic immune activity. Moreover, we identified the deubiquitinase UCHL1 as the most upregulated cytosolic protein in differentiating OCs. Functional studies proved it essential, as UCHL1 genetic and pharmacologic inhibition potently suppressed OCgenesis. Furthermore, proteomics and mechanistic dissection showed that UCHL1 supports OC differentiation by restricting the anti-OCgenic activity of NRF2, the transcriptional activator of the canonical antioxidant response, through redox-independent stabilization of the NRF2 inhibitor, KEAP1. Besides offering a valuable experimental framework to dissect OC differentiation, our study discloses the essential role of UCHL1, exerted through KEAP1-dependent containment of NRF2 anti-OCgenic activity, yielding a novel potential actionable pathway against bone loss.


Assuntos
Reabsorção Óssea , Osteólise , Animais , Camundongos , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Enzimas Desubiquitinantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteoclastos/metabolismo , Osteólise/metabolismo , Proteômica , Ligante RANK/metabolismo
20.
Cells ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534353

RESUMO

Gravity and mechanical forces cause important alterations in the human skeletal system, as demonstrated by space flights. Innovative animal models like zebrafish embryos and medaka have been introduced to study bone response in ground-based microgravity simulators. We used, for the first time, adult zebrafish in simulated microgravity, with a random positioning machine (RPM) to study bone remodeling in the scales. To evaluate the effects of microgravity on bone remodeling in adult bone tissue, we exposed adult zebrafish to microgravity for 14 days using RPM and we evaluated bone remodeling on explanted scales. Our data highlight bone resorption in scales in simulated microgravity fish but also in the fish exposed, in normal gravity, to the vibrations produced by the RPM. The osteoclast activation in both rotating and non-rotating samples suggest that prolonged vibrations exposure leads to bone resorption in the scales tissue. Stress levels in these fish were normal, as demonstrated by blood cortisol quantification. In conclusion, vibrational mechanical stress induced bone resorption in adult fish scales. Moreover, adult fish as an animal model for microgravity studies remains controversial since fish usually live in weightless conditions because of the buoyant force from water and do not constantly need to support their bodies against gravity.


Assuntos
Reabsorção Óssea , Animais , Vibração , Ausência de Peso , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...