Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.848
Filtrar
1.
J Mass Spectrom ; 59(5): e5021, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605451

RESUMO

Trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOFMS) has emerged as a tool to study protein conformational states. In TIMS, gas-phase ions are guided across the IM stages by applying direct current (DC) potentials (D1-6), which, however, might induce changes in protein structures through collisional activation. To define conditions for native protein analysis, we evaluated the influence of these DC potentials using the metalloenzyme bovine carbonic anhydrase (BCA) as primary test compound. The variation of DC potentials did not change BCA-ion charge and heme content but affected (relative) charge-state intensities and adduct retention. Constructed extracted-ion mobilograms and corresponding collisional cross-section (CCS) profiles gave useful insights in (alterations of) protein conformational state. For BCA, the D3 and D6 potential (which are applied between the deflection transfer and funnel 1 [F1] and the accumulation exit and the start of the ramp, respectively) had most profound effects, showing multimodal CCS distributions at higher potentials indicating gradual unfolding. The other DC potentials only marginally altered the CCS profiles of BCA. To allow for more general conclusions, five additional proteins of diverse molecular weight and conformational stability were analyzed, and for the main protein charge states, CCS profiles were constructed. Principal component analysis (PCA) of the obtained data showed that D1 and D3 exhibit the highest degree of correlation with the ratio of folded and unfolded protein (F/U) as extracted from the mobilograms obtained per set D potential. The correlation of D6 with F/U and protein charge were similar, and D2, D4, and D5 showed an inverse correlation with F/U but were correlated with protein charge. Although DC boundary values for induced conformational changes appeared protein dependent, a set of DC values could be determined, which assured native analysis of most proteins.


Assuntos
Espectrometria de Mobilidade Iônica , Proteínas , Animais , Bovinos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Conformação Proteica , Proteínas/química , Íons
2.
Environ Sci Technol ; 58(15): 6835-6842, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38570313

RESUMO

Artificial ion channel membranes hold high promise in water treatment, nanofluidics, and energy conversion, but it remains a great challenge to construct such smart membranes with both reversible ion-gating capability and desirable ion selectivity. Herein, we constructed a smart MXene-based membrane via p-phenylenediamine functionalization (MLM-PPD) with highly stable and aligned two-dimensional subnanochannels, which exhibits reversible ion-gating capability and ultrahigh metal ion selectivity similar to biological ion channels. The pH-sensitive groups within the MLM-PPD channel confers excellent reversible Mg2+-gating capability with a pH-switching ratio of up to 100. The mono/divalent metal-ion selectivity up to 1243.8 and 400.9 for K+/Mg2+ and Li+/Mg2+, respectively, outperforms other reported membranes. Theoretical calculations combined with experimental results reveal that the steric hindrance and stronger PPD-ion interactions substantially enhance the energy barrier for divalent metal ions passing through the MLM-PPD, and thus leading to ultrahigh mono/divalent metal-ion selectivity. This work provides a new strategy for developing artificial-ion channel membranes with both reversible ion-gating functionality and high-ion selectivity for various applications.


Assuntos
Canais Iônicos , Metais , Nitritos , Elementos de Transição , Íons , Cátions Bivalentes , Membranas Artificiais , Concentração de Íons de Hidrogênio
3.
Food Res Int ; 184: 114274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609251

RESUMO

Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.


Assuntos
Oryza , Antocianinas , Albuminas , Cloreto de Sódio , Cloreto de Sódio na Dieta , Grão Comestível , Íons
4.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611844

RESUMO

Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.


Assuntos
Mercúrio , Metais Pesados , Ligantes , Sais , Metais Pesados/toxicidade , Mercúrio/toxicidade , Íons , Antibacterianos/farmacologia , Alcenos , Polímeros , Piridinas
5.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611935

RESUMO

Immobilized metal ion affinity chromatography (IMAC) adsorbents generally have excellent affinity for histidine-rich proteins. However, the leaching of metal ions from the adsorbent usually affects its adsorption performance, which greatly affects the reusable performance of the adsorbent, resulting in many limitations in practical applications. Herein, a novel IMAC adsorbent, i.e., Cu(II)-loaded polydopamine-coated urchin-like titanate microspheres (Cu-PDA-UTMS), was prepared via metal coordination to make Cu ions uniformly decorate polydopamine-coated titanate microspheres. The as-synthesized microspheres exhibit an urchin-like structure, providing more binding sites for hemoglobin. Cu-PDA-UTMS exhibit favorable selectivity for hemoglobin adsorption and have a desirable adsorption capacity towards hemoglobin up to 2704.6 mg g-1. Using 0.1% CTAB as eluent, the adsorbed hemoglobin was easily eluted with a recovery rate of 86.8%. In addition, Cu-PDA-UTMS shows good reusability up to six cycles. In the end, the adsorption properties by Cu-PDA-UTMS towards hemoglobin from human blood samples were analyzed by SDS-PAGE. The results showed that Cu-PDA-UTMS are a high-performance IMAC adsorbent for hemoglobin separation, which provides a new method for the effective separation and purification of hemoglobin from complex biological samples.


Assuntos
Hemoglobinas , Imidazóis , Indóis , Polímeros , Humanos , Microesferas , Cromatografia de Afinidade , Íons
6.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612444

RESUMO

Human Rad51 protein (HsRad51)-promoted DNA strand exchange, a crucial step in homologous recombination, is regulated by proteins and calcium ions. Both the activator protein Swi5/Sfr1 and Ca2+ ions stimulate different reaction steps and induce perpendicular DNA base alignment in the presynaptic complex. To investigate the role of base orientation in the strand exchange reaction, we examined the Ca2+ concentration dependence of strand exchange activities and structural changes in the presynaptic complex. Our results show that optimal D-loop formation (strand exchange with closed circular DNA) required Ca2+ concentrations greater than 5 mM, whereas 1 mM Ca2+ was sufficient for strand exchange between two oligonucleotides. Structural changes indicated by increased fluorescence intensity of poly(dεA) (a poly(dA) analog) reached a plateau at 1 mM Ca2+. Ca2+ > 2 mM was required for saturation of linear dichroism signal intensity at 260 nm, associated with rigid perpendicular DNA base orientation, suggesting a correlation with the stimulation of D-loop formation. Therefore, Ca2+ exerts two different effects. Thermal stability measurements suggest that HsRad51 binds two Ca2+ ions with KD values of 0.2 and 2.5 mM, implying that one step is stimulated by one Ca2+ bond and the other by two Ca2+ bonds. Our results indicate parallels between the Mg2+ activation of RecA and the Ca2+ activation of HsRad51.


Assuntos
Oligonucleotídeos , Rad51 Recombinase , Humanos , Cálcio , Íons , DNA
7.
World J Gastroenterol ; 30(10): 1280-1286, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596495

RESUMO

Yu et al's study in the World Journal of Gastroenterology (2023) introduced a novel regimen of Vonoprazan-amoxicillin dual therapy combined with Saccharomyces boulardii (S. boulardii) for the rescue therapy against Helicobacter pylori (H. pylori), a pathogen responsible for peptic ulcers and gastric cancer. Vonoprazan is a potassium-competitive acid blocker renowned for its rapid and long-lasting acid suppression, which is minimally affected by mealtime. Compared to proton pump inhibitors, which bind irreversibly to cysteine residues in the H+/K+-ATPase pump, Vonoprazan competes with the K+ ions, prevents the ions from binding to the pump and blocks acid secretion. Concerns with increasing antibiotic resistance, effects on the gut microbiota, patient compliance, and side effects have led to the advent of a dual regimen for H. pylori. Previous studies suggested that S. boulardii plays a role in stabilizing the gut barrier which improves H. pylori eradication rate. With an acceptable safety profile, the dual-adjunct regimen was effective regardless of prior treatment failure and antibiotic resistance profile, thereby strengthening the applicability in clinical settings. Nonetheless, S. boulardii comes in various formulations and dosages, warranting further exploration into the optimal dosage for supplementation in rescue therapy. Additionally, larger, randomized, double-blinded controlled trials are warranted to confirm these promising results.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Pirróis , Saccharomyces boulardii , Sulfonamidas , Humanos , Amoxicilina/uso terapêutico , Antibacterianos/efeitos adversos , Infecções por Helicobacter/tratamento farmacológico , Claritromicina/uso terapêutico , Quimioterapia Combinada , Inibidores da Bomba de Prótons/efeitos adversos , ATPase Trocadora de Hidrogênio-Potássio , Íons/farmacologia , Íons/uso terapêutico , Resultado do Tratamento
8.
Waste Manag ; 180: 96-105, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564915

RESUMO

The growing electric vehicle industry has increased the demand for raw materials used in lithium-ion batteries (LIBs), raising concerns about material availability. Froth flotation has gained attention as a LIB recycling method, allowing the recovery of low value materials while preserving the chemical integrity of electrode materials. Furthermore, as new battery chemistries such as lithium titanate (LTO) are introduced into the market, strategies to treat mixed battery streams are needed. In this work, laboratory-scale flotation separation experiments were conducted on two model black mass samples: i) a mixture containing a single cathode (i.e., NMC811) and two anode species (i.e., LTO and graphite), simulating a mixed feedstock prior to hydrometallurgical treatment; and ii) a graphite-TiO2 mixture to reflect the expected products after leaching. The results indicate that graphite can be recovered with > 98 % grade from NMC811-LTO-graphite mixtures. Additionally, it was found that flotation kinetics are dependent on the electrode particle species present in the suspension. In contrast, the flotation of graphite from TiO2 resulted in a low grade product (<96 %) attributed to the significant entrainment of ultrafine TiO2 particles. These results suggest that flotation of graphite should be preferably carried out before hydrometallurgical treatment of black mass.


Assuntos
Grafite , Lítio , Reciclagem/métodos , Fontes de Energia Elétrica , Íons
9.
Sci Rep ; 14(1): 8023, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580805

RESUMO

Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.


Assuntos
Arsênio , Metais Pesados , Selênio , Humanos , Chumbo/toxicidade , Arsênio/toxicidade , Cádmio/toxicidade , Análise de Mediação , Mineralocorticoides , Intoxicação por Metais Pesados , Zinco , Ferro , Íons , China , Metais Pesados/toxicidade
10.
Igaku Butsuri ; 44(1): 1-7, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38583957

RESUMO

At the National Institutes for Quantum Science and Technology (QST), a multi-ion therapy using helium, carbon, oxygen, and neon ions has been studied for charged particle therapy with more optimal biological effects. To make multi-ion therapy clinically feasible, a new treatment system was developed to realize the changes of the ion species in each irradiation using the Heavy Ion Medial Accelerator in Chiba (HIMAC). Since radiation therapy is safety-critical, it is necessary to construct a safety system that includes multiple safety barriers in the new treatment system for multi-ion therapy and to perform a safety analysis for the prevention of serious accidents. In this study, we conducted a safety analysis using event tree analysis (ETA) for newly introduced processes in the treatment planning, accelerator, and irradiation system of the multi-ion therapy. ETA is an optimal method to verify multiple safety barriers that are essential for medical safety and to shorten the time for safety analysis by focusing only on the new processes. Through ETA, we clarified the types of malfunctions and human errors that may lead to serious accidents in the new system for multi-ion therapy, and verified whether safety barriers such as interlock systems and human check procedures are sufficient to prevent such malfunctions and human errors. As a result, 6 initial events which may lead to serious accidents were listed in the treatment planning process, 16 initial events were listed in the accelerator system, and 13 initial events were listed in the irradiation system. Among these 35 initial events, 5 cautionary initial events were identified that could lead to serious final events and they had a probability of occurrence higher than 10-4. Meanwhile, the others were all initial events that do not lead to serious accidents, or the initial events that can lead to serious accidents but were considered to have sufficient safety barriers. The safety analysis using ETA successfully identified the system malfunctions and the human errors that can lead to serious accidents, and the multiple safety barriers against them were systematically analyzed. It became clear that the multiple safety barriers were not sufficient for some initial events. We plan to improve the safety barriers for the five cautionary initial events before the start of the clinical trial. Based on these findings, we achieved our objective to conduct a safety analysis for a new treatment system for multi-ion therapy. The safety analysis procedure using ETA proposed by this study will be effective when new systems for radiotherapy are established at QST and other facilities in the future as well.


Assuntos
Radioterapia com Íons Pesados , Íons Pesados , Humanos , Radioterapia com Íons Pesados/métodos , Íons , Oxigênio/uso terapêutico , Carbono
11.
Environ Monit Assess ; 196(5): 435, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587761

RESUMO

Simple and sensitive electrochemical sensors were fabricated from cerium oxide (CeO2) and copper-benzene tricarboxylic acid-modified cerium oxide (CeO2-Cu-BTC) materials for differential pulse voltammetric analysis of toxic cadmium (Cd) ions in aqueous solutions. The materials were prepared by hydrothermal method and structurally characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray (SEM-EDX), thermogravimetric analysis (TGA), and X-ray diffraction analysis (XRD). The CeO2-modified carbon paste electrode (CeCPE) and the CeO2-Cu-BTC-modified carbon paste electrode (CeBCPE) were electrochemically characterized by their cyclic voltammetry and electrochemical impedance study in standard K3[Fe(CN)6] single-electron redox process. Their electrochemical surface areas, electrode surface coverages, and charge transfer resistances were calculated to be 1.46 cm2, 2.338 × 10-5 mol∙cm-2, and 2790 Ω and 5.48 cm2, 2.476 × 10-5 mol∙cm-2, and 1254.65 Ω for CeCPE and CeBCPE, respectively. These fabricated electrodes were used as electrochemical sensors for cadmium ion estimation by optimizing the experimental parameters through differential pulse voltammetry. The optimized conditions included 10% modifier for CeCPE and 5% modifier for CeBCPE in 0.12 M HCl solution of pH 5 as supporting electrolyte at - 1.2 V deposition for 30 s in 0.01 to 10 mg L-1 linear cadmium solution range. Under these conditions, the limit of quantification (LOQ) of 0.368 mg L-1 and 0.005 mg L-1 was calculated for CeCPE and CeBCPE electrodes, respectively. The limit of detection (LOD) was calculated to be 0.121 mg L-1 and 0.002 mg L-1 for CeCPE and CeBCPE, respectively. All the experimental results indicated that electrodes fabricated from CeO2-Cu-BTC show better performance as compared to CeO2-based electrodes. Both these types of electrochemical sensors presented good repeatability and performance in the presence of interfering ions as well. From these findings, it can also be inferred that these electrochemical sensors can provide a simple and very sensitive method for approximation of toxic cadmium ions in aqueous solutions.


Assuntos
Cádmio , Cério , Cobre , Cicloexanos , Monitoramento Ambiental , Íons , Carbono
12.
Anal Chem ; 96(14): 5589-5597, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38556723

RESUMO

Sebum lipids are composed of nonpolar lipids, and they pose challenges for mass spectrometry-based analysis due to low ionization efficiency and the existence of numerous isomers and isobars. To address these challenges, we have developed ethyl 2-oxo-2-(pyridine-3-yacetate as a charge-tagging Paternò-Büchi reagent and Michler's ketone as a highly efficient photocatalyst, achieving ∼90% conversion for C═C derivatization under 440 nm LED irradiation. This derivatization, when coupled with electrospray ionization-tandem mass spectrometry, boosts the detection of sebum lipids and pinpoints C═C location in a chain-specific fashion. Identification and quantitation of isomers are readily achieved for wax esters, a class of underexplored sebum lipids, which have C═C bonds distributed in fatty alcohol and fatty acyl chains. A shotgun analysis workflow has been developed by pairing the offline PB derivatization with cyclic ion mobility spectrometry-mass spectrometry. Besides the dominant n-10 C═C location in unsaturated wax esters, profiling of low abundance isomers, including the rarely reported n-7 and n-13 locations, is greatly enhanced due to separations of C═C diagnostic ions by ion mobility. Over 900 distinct lipid structures from human sebum lipid extract have been profiled at the chain-specific C═C level, including wax esters (500), glycerolipids (393), and cholesterol esters (22), far more exceeding previous reports. Overall, we have developed a fast and comprehensive lipidomic profiling tool for sebum samples, a type of noninvasive biofluids holding potential for the discovery of disease markers in distal organs.


Assuntos
Lipídeos , Sebo , Humanos , Lipídeos/análise , Sebo/química , Espectrometria de Mobilidade Iônica , Lipidômica , Espectrometria de Massas por Ionização por Electrospray/métodos , Íons
13.
Luminescence ; 39(4): e4736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590043

RESUMO

In recent trends, radiation falls under the narrowband ultraviolet-B region (305-315 nm) widely used in phototherapy lamp applications in the treatment of skin diseases. In this paper, we report a Gd3+-doped NaYF4 luminescent material synthesized for the first time using the low-temperature co-precipitation method. It crystallized into a face-centred cubic structure, as confirmed by X-ray diffraction characterization techniques and Rietveld refinement. The photoluminescence property of the as-prepared sample shows a highly intense, sharp emission band obtained at 311 nm, which belongs to the narrowband ultraviolet-B region and corresponds to the transition of the 6P7/2→8S7/2 level of the Gd3+ ions under 272 nm excitation (8S7/2 to 6IJ). The transitions of the Gd3+ ions are detected entirely with different concentrations of Gd3+ ions. Scanning electron microscopy analysis indicated that the average particle was 288 nm. The critical distance for energy transfer was calculated to be equal to 11.5017 Å. Dipole-dipole interaction is responsible for energy transfer, as analyzed by Dexter theory. These excellent optical characteristics, together with their highly efficient and low-cost synthesis approach, indicate that synthesized NaYF4:Gd3+ phosphors have excessive potential for phototherapeutic lamp applications.


Assuntos
Luminescência , Fototerapia , Transferência de Energia , Difração de Raios X , Íons
14.
Anal Chim Acta ; 1302: 342509, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580413

RESUMO

Functional nucleic acids (FNAs) have attracted a lot of attention for the rapid detection of metal ions. Cr3+ is one of the major heavy metal ions in natural waters. Due to the slow ligand exchange rate of Cr3+, the FNA-based Cr3+ sensors require long assay times, limiting the on-site applications. In this study, we report that the good's buffers containing amino and polyhydroxy groups greatly increase the ligand exchange rate of Cr3+. Using EDTA as a model coordinate ligand, the Tris buffer (100 mM, pH 7.0) showed the best acceleration effect among the eight buffers. It improved the rate constant ∼20-fold, shorten the half-time 19-fold, and lowered the activation energy ∼70% at 40 °C. The Tris buffer was then applied for sensor based on the Cr3+-binding induced fluorescence quenching of fluorescein (FAM)-labeled and single-stranded DNA (ssDNA), which shortened the assay time from 1 h to 1 min. The Tris buffer also ∼100% enhanced the fluorescence intensity of FAM, achieving the 11.4-fold lower limit of detection (LOD = 6.97 nM, S/N = 3). By the combination use of the Tris buffer and ascorbic acid, the strong interference from Cu2+, Pb2+, and Fe3+ suffered in many previous reported Cr3+ sensors was avoided. The practical application of the sensor for the detection of Cr3+ spiked in the real water samples were demonstrated with high recovery percentages. The Tris buffer could be applied for other metal ions with slow ligand exchange rate (such as V2+, Co3+ and Fe2+) to solve diverse issues such as long assay time and low synthesis yield of metal complexes, without the need of heating treatment.


Assuntos
Cromo , Trometamina , Cromo/química , Fluorescência , Ligantes , Metais , Íons , DNA de Cadeia Simples
15.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583018

RESUMO

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Assuntos
Nanoporos , Titânio , Titânio/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/genética , Eletrólitos/farmacologia , Íons/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
16.
Se Pu ; 42(4): 311-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566420

RESUMO

Ion chromatography (IC) is a novel high performance liquid chromatographic technique that is suitable for the separation and analysis of ionic substances in different matrix samples. Since 1975, it has been widely used in many fields, such as the environment, energy, food, and medicine. IC compensates for the separation limitations of traditional gas chromatography and high performance liquid chromatography and can realize the qualitative analysis and quantitative detection of strongly polar components. This chromatographic technique features not only simple operations but also rapid analysis. The sensors used in IC are characterized by high sensitivity and selectivity, and the technique can simultaneously separate and determine multiple components. Several advances in IC instrumentation and chromatographic theories have been developed in recent years. IC can analyze various types of samples, including ions, sugars, amino acids, and organic acids (bases). Chinese herbal medicines are typically characterized by highly complex chemical compositions and may contain carbohydrates, proteins, alkaloids, and other active components. They also contain toxic residues such as sulfur dioxide, which may be produced during the processing of medicinal materials. Therefore, the analysis and elucidation of the precise chemical constituents of Chinese herbal medicines present key problems that must be resolved in modern Chinese herbal medicine research. In this context, IC has become an important method for analyzing and identifying the complex components of Chinese herbal medicines because this method is suitable for detecting a single active ingredients among complex components. This paper introduces the different types and principles of IC as well as research progress in this technique. As the applications of IC-based methods in pharmaceutical science, cell biology, and microbiology increase, further development is necessary to expand the applications of this technique. The development of innovative techniques has enabled IC technologies to achieve higher analytical sensitivity, better selectivity, and wider application. The components of Chinese herbal medicines can be divided into endogenous and exogenous components according to their source: endogenous components include glycosides, amino acids, and organic acids, while exogenous components include toxic residues such as sulfur dioxide. Next, the applications of IC to the complex components of Chinese herbal medicines in recent decades are summarized. The most commonly used IC technologies and methods include ion exchange chromatography and conductivity detection. The advantages of IC for the analysis of alkaloids have been demonstrated. This method exhibits better characteristics than traditional analytical methods. However, the applications of IC for the speciation analysis of inorganic anions are limited. Moreover, few reports on the direct application of the technique for the determination of the main active substances in Chinese herbal medicines, including flavonoids, phenylpropanoids, and steroids, have been reported. Finally, this paper reviews new IC technologies and their application progress in Chinese herbal medicine, focusing on their prospects for the effective separation and analysis of complex components. In particular, we discuss the available sample (on-line) pretreatment technologies and explore possible technologies for the selective and efficient enrichment and separation of different components. Next, we assess innovative research on solid-phase materials that can improve the separation effect and analytical sensitivity of IC. We also describe the features of multidimensional chromatography, which combines the advantages of various chromatographic techniques. This review provides a theoretical reference for the further development of IC technology for the analysis of the complex chemical components of Chinese herbal medicines.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Dióxido de Enxofre/análise , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Íons , Medicina Tradicional Chinesa
17.
Channels (Austin) ; 18(1): 2341077, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38601983

RESUMO

Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Transdução de Sinais , Acoplamento Excitação-Contração , Íons/metabolismo , Sinalização do Cálcio/fisiologia , Canais de Cálcio Tipo L/metabolismo
18.
J Gen Physiol ; 156(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557788

RESUMO

DSC1, a Drosophila channel with sequence similarity to the voltage-gated sodium channel (NaV), was identified over 20 years ago. This channel was suspected to function as a non-specific cation channel with the ability to facilitate the permeation of calcium ions (Ca2+). A honeybee channel homologous to DSC1 was recently cloned and shown to exhibit strict selectivity for Ca2+, while excluding sodium ions (Na+), thus defining a new family of Ca2+ channels, known as CaV4. In this study, we characterize CaV4, showing that it exhibits an unprecedented type of inactivation, which depends on both an IFM motif and on the permeating divalent cation, like NaV and CaV1 channels, respectively. CaV4 displays a specific pharmacology with an unusual response to the alkaloid veratrine. It also possesses an inactivation mechanism that uses the same structural domains as NaV but permeates Ca2+ ions instead. This distinctive feature may provide valuable insights into how voltage- and calcium-dependent modulation of voltage-gated Ca2+ and Na+ channels occur under conditions involving local changes in intracellular calcium concentrations. Our study underscores the unique profile of CaV4 and defines this channel as a novel class of voltage-gated Ca2+ channels.


Assuntos
Cálcio , Canais de Sódio Disparados por Voltagem , Abelhas , Animais , Canais de Sódio Disparados por Voltagem/química , Íons
19.
ACS Appl Bio Mater ; 7(4): 2499-2510, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517141

RESUMO

As important biomarkers of many diseases, glycoproteins are of great significance to biomedical science. It is essential to develop efficient glycoprotein enrichment platforms and investigate their adsorption mechanism. In this work, a conspicuous enrichment strategy for glycoproteins was developed by using an electrospun fiber membrane wrapped with polydopamine (PDA) and modified with 3-aminophenylboronic acid and nickel ions, named PAN/DA@PDA@APBA/Ni. The enrichment characteristics of PAN/DA@PDA@APBA/Ni toward glycoproteins were explored through adsorption behavior. Thanks to the existence of two sites of interaction (metal ion chelation and boronate affinity), PAN/DA@PDA@APBA/Ni exhibited significant enrichment capacity for glycoproteins, ovalbumin (604.6 mg/g), and human immunoglobulin G (331.0 mg/g). The adsorption kinetic results of glycoprotein ovalbumin on PAN/DA@PDA@APBA/Ni conform to the pseudo-first-order kinetic model in the first adsorption stage, while the second half adsorption stage is more in line with the pseudo-second-order kinetic model. Moreover, the physical characteristics of PAN/DA@PDA@APBA/Ni and subsequent adsorption experiments on electrospun fiber modified with only phenylboronic acid or nickel ions both confirmed two sites of interaction (metal ion chelation and boronate affinity, respectively). Furthermore, a stepwise elution method with dual-affinity interaction was designed and successfully applied to enrich glycoproteins in real biological samples. This work provides an idea for sample pretreatment, especially for the design of dual-affinity materials in glycoproteins enrichment.


Assuntos
Glicoproteínas , Níquel , Humanos , Ovalbumina , Adsorção , Íons
20.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38515312

RESUMO

Proteins from hyperthermophiles often contain a large number of ionic interactions. Close examination of the previously determined crystal structure of the ATPase domain of MutL from a hyperthermophile, Aquifex aeolicus, revealed that the domain contains a continuous ion-pair/hydrogen-bond network consisting of 11 charged amino acid residues on a ß-sheet. Mutations were introduced to disrupt the network, showing that the more extensively the network was disrupted, the greater the thermostability of the protein was decreased. Based on urea denaturation analysis, a thermodynamic parameter, energy for the conformational stability, was evaluated, which indicated that amino acid residues in the network contributed additively to the protein stability. A continuous network rather than a cluster of isolated interactions would pay less entropic penalty upon fixing the side chains to make the same number of ion pairs/hydrogen bonds, which might contribute more favorably to the structural formation of thermostable proteins.


Assuntos
Bactérias , Dobramento de Proteína , Ligação de Hidrogênio , Bactérias/genética , Íons , Adenosina Trifosfatases/genética , Aminoácidos , Aquifex
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...