Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.125
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612673

RESUMO

Pumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.


Assuntos
Cucurbita , Frutas , Frutas/genética , Cucurbita/genética , Multiômica , Regulação para Baixo , Carotenoides , Glucose
2.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612756

RESUMO

Carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Increasingly, studies have demonstrated that vertebrate carotenoid cleavage oxygenases (CCOs) are essential enzymes in carotenoid metabolism and are therefore potential candidate genes for improving carotenoid deposition. However, our understanding of carotenoid bioavailability and CCOs functions in invertebrates, particularly marine species, is currently quite limited. We previously identified that a CCO homolog, PyBCO-like 1, was the causal gene for carotenoid coloration in the 'Haida golden scallop', a variety of Yesso scallop (Patinopecten yessoensis) characterized by carotenoid enrichment. Here, we found that another CCO-encoding gene named PyBCO2 (ß-carotene oxygenase 2) was widely expressed in P. yessoensis organs/tissues, with the highest expression in striated muscle. Inhibiting BCO2 expression in P. yessoensis through RNA interference led to increased carotenoid (pectenolone and pectenoxanthin) deposition in the striated muscle, and the color of the striated muscle changed from white to light orange. Our results indicate that PyBCO2 might be a candidate gene used for improving carotenoid content in normal Yesso scallops, and also in 'Haida golden scallops'.


Assuntos
Dioxigenases , Pectinidae , Animais , Humanos , beta Caroteno , Músculo Esquelético , Carotenoides , Pectinidae/genética , Dioxigenases/genética
3.
Commun Biol ; 7(1): 448, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605243

RESUMO

Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble ß-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds ß-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, ß-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while ß-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.


Assuntos
Gafanhotos , beta Caroteno , Animais , Gafanhotos/metabolismo , Carotenoides/metabolismo , Xantofilas , Quitina
4.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605293

RESUMO

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerância ao Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte de Íons , Carbono/metabolismo , Solo , Fatores de Transcrição/genética
5.
Theor Appl Genet ; 137(5): 105, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622387

RESUMO

KEY MESSAGE: Two major-effect QTL GlcA07.1 and GlcA09.1 for green leaf color were fine mapped into 170.25 kb and 191.41 kb intervals on chromosomes A07 and A09, respectively, and were validated by transcriptome analysis. Non-heading Chinese cabbage (NHCC) is a leafy vegetable with a wide range of green colors. Understanding the genetic mechanism behind broad spectrum of green may facilitate the breeding of high-quality NHCC. Here, we used F2 and F7:8 recombination inbred line (RIL) population from a cross between Wutacai (dark-green) and Erqing (lime-green) to undertake the genetic analysis and quantitative trait locus (QTL) mapping in NHCC. The genetic investigation of the F2 population revealed that the variation of green leaf color was controlled by two recessive genes. Six pigments associated with green leaf color, including total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, lutein, and carotene were quantified and applied for QTL mapping in the RIL population. A total of 7 QTL were detected across the whole genome. Among them, two major-effect QTL were mapped on chromosomes A07 (GlcA07.1) and A09 (GlcA09.1) corresponding to two QTL identified in the F2 population. The QTL GlcA07.1 and GlcA09.1 were further fine mapped into 170.25 kb and 191.41 kb genomic regions, respectively. By comparing gene expression level and gene annotation, BraC07g023810 and BraC07g023970 were proposed as the best candidates for GlcA07.1, while BraC09g052220 and BraC09g052270 were suggested for GlcA09.1. Two InDel molecular markers (GlcA07.1-BcGUN4 and GlcA09.1-BcSG1) associated with BraC07gA023810 and BraC09g052220 were developed and could effectively identify leaf color in natural NHCC accessions, suggesting their potential for marker-assisted leaf color selection in NHCC breeding.


Assuntos
Brassica , Locos de Características Quantitativas , Clorofila A , Melhoramento Vegetal , Folhas de Planta/genética , Carotenoides , Brassica/genética , Estudos de Associação Genética
6.
BMC Plant Biol ; 24(1): 265, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600480

RESUMO

BACKGROUND: Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS: A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION: We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genética , Clorofila A/metabolismo , Filogenia , Cloroplastos/genética , Arabidopsis/genética , Mutação , Fenótipo , Folhas de Planta/metabolismo , Carotenoides/metabolismo , MicroRNAs/metabolismo , Precursores de Proteínas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Proteínas de Arabidopsis/genética
7.
World J Microbiol Biotechnol ; 40(5): 160, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607448

RESUMO

ß-Carotene is an orange fat-soluble compound, which has been widely used in fields such as food, medicine and cosmetics owing to its anticancer, antioxidant and cardiovascular disease prevention properties. Currently, natural ß-carotene is mainly extracted from plants and algae, which cannot meet the growing market demand, while chemical synthesis of ß-carotene cannot satisfy the pursuit for natural products of consumers. The ß-carotene production through microbial fermentation has become a promising alternative owing to its high efficiency and environmental friendliness. With the rapid development of synthetic biology and in-depth study on the synthesis pathway of ß-carotene, microbial fermentation has shown promising applications in the ß-carotene synthesis. Accordingly, this review aims to summarize the research progress and strategies of natural carotenoid producing strain and metabolic engineering strategies in the heterologous synthesis of ß-carotene by engineered microorganisms. Moreover, it also summarizes the adoption of inexpensive carbon sources to synthesize ß-carotene as well as proposes new strategies that can further improve the ß-carotene production.


Assuntos
Produtos Biológicos , beta Caroteno , Fermentação , Carotenoides , Antioxidantes
8.
Sci Rep ; 14(1): 8514, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609452

RESUMO

The study aimed to measure the carotenoid (Car) and pH contents of carrots using hyperspectral imaging. A total of 300 images were collected using a hyperspectral imaging system, covering 472 wavebands from 400 to 1000 nm. Regions of interest (ROIs) were defined to extract average spectra from the hyperspectral images (HIS). We developed two models: least squares support vector machine (LS-SVM) and partial least squares regression (PLSR) to establish a quantitative analysis between the pigment amounts and spectra. The spectra and pigment contents were predicted and correlated using these models. The selection of EWs for modeling was done using the Successive Projections Algorithm (SPA), regression coefficients (RC) from PLSR models, and LS-SVM. The results demonstrated that hyperspectral imaging could effectively evaluate the internal attributes of carrot cortex and xylem. Moreover, these models accurately predicted the Car and pH contents of the carrot parts. This study provides a valuable approach for variable selection and modeling in hyperspectral imaging studies of carrots.


Assuntos
Daucus carota , Imageamento Hiperespectral , Análise Multivariada , Algoritmos , Carotenoides
9.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611864

RESUMO

The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A ß-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.


Assuntos
Passiflora , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Carotenoides , Frutas
10.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612498

RESUMO

Sericin derived from the white cocoon of Bombyx mori has been attracting more attention for its utilization in food, cosmetics, and biomedicine. The potential health benefits of natural carotenoids for humans have also been well-established. Some rare strains of Bombyx mori (B. mori) produce yellow-red cocoons, which endow a potential of natural carotenoid-containing sericin. We hypothesized that natural carotenoid-containing sericin from yellow-red cocoons would exhibit better properties compared with white cocoon sericin. To investigate the physicochemical attributes of natural carotenoid-containing sericin, we bred two silkworm strains from one common ancestor, namely XS7 and XS8, which exhibited different cocoon colors as a result of the inconsistent distribution of lutein and ß-carotene. Compared with white cocoon sericin, the interaction between carotenoids and sericin molecules in carotenoid-containing sericin resulted in a unique fluorescence emission at 530, 564 nm. The incorporation of carotenoids enhanced the antibacterial effect, anti-cancer ability, cytocompatibility, and antioxidant of sericin, suggesting potential wide-ranging applications of natural carotenoid-containing sericin as a biomass material. We also found differences in fluorescence characteristics, antimicrobial effects, anti-cancer ability, and antioxidants between XS7 and XS8 sericin. Our work for the first time suggested a better application potential of natural carotenoid-containing sericin as a biomass material than frequently used white cocoon sericin.


Assuntos
Bombyx , Sericinas , Humanos , Animais , Carotenoides/farmacologia , Sericinas/farmacologia , Antioxidantes/farmacologia , beta Caroteno/farmacologia
11.
J Nutr Sci ; 13: e11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572367

RESUMO

This study aimed to evaluate the association between dietary carotenoid intake and periodontitis in diabetic patients. Data on diabetic patients were collected from the National Health and Nutrition Examination Survey (NHANES) 2009-2014 for this cross-sectional study. Dietary intake of carotenoids was assessed through the first 24-hour dietary recall interview. Full-mouth periodontal examinations were conducted by trained dental examiners. Subgroup analysis was conducted in terms of age, gender, the number of missing teeth, cardiovascular disease, smoking, and anti-diabetic drugs. Totally 1914 diabetic patients were included, with 1281 (66.93%) in the periodontitis group. After adjusting for age, gender, race, education, smoking, dental implants, hepatitis, and the number of missing teeth, α-carotene intake ≥55.82 mcg was associated with lower odds of periodontitis than α-carotene intake <55.82 mcg [OR = 0.70, 95% CI: 0.53-0.91, P = 0.010]; lutein and zeaxanthin intake ≥795.95 mcg was associated with decreased odds of periodontitis than lutein and zeaxanthin intake <795.95 mcg (OR = 0.75, 95%CI: 0.57-0.98, P = 0.039). The association between carotenoid intake and periodontitis varied across different subpopulations. In diabetes, dietary intake of α-carotene and lutein and zeaxanthin was inversely associated with the odds of periodontitis, which may facilitate clinical periodontitis management.


Assuntos
Diabetes Mellitus , Periodontite , Humanos , Luteína , Inquéritos Nutricionais , Zeaxantinas , Estudos Transversais , beta Caroteno , Carotenoides , Periodontite/complicações
12.
BMC Plant Biol ; 24(1): 241, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570771

RESUMO

BACKGROUND: The global growth of pistachio production has prompted exploration into sustainable agricultural practices, on the application of humic substances such as fulvic acid in enhancing the quality of horticultural crops. The present study was carried out in Qom province, Iran, on 20 years old pistachio (Pistacia vera L. cv. Kaleh-Ghoochi) trees and investigated the impact of foliar spraying of fulvic acid at varying concentrations (1.5, 3, and 4.5 g L- 1) on the antioxidant and quality properties of pistachio. The different concentrations of fulvic acid were applied at two key stages: at the initiation of pistachio kernel formation (late June) and the development stage of pistachio kernel (late August), as well as at both time points. Following harvest at the horticulturally mature phase, various parameters, including total phenols, flavonoids, soluble proteins, soluble carbohydrate content, antioxidant capacity, and antioxidant enzyme activity, were assessed. RESULTS: Results indicated that foliar application of fulvic acid, particularly at 1.5 g L- 1 during both late June and August, effectively increased phenolic compounds (31.8%) and flavonoid content (24.53%). Additionally, this treatment also augmented antioxidant capacity and heightened the activity of catalase (CAT) (37.56%), ascorbate peroxidase (APX) (63.86%), and superoxide dismutase (SOD) (76.45%). Conversely, peroxidase (POX) (41.54%) activity was reduced in fulvic acid-treated nuts compared with controls. Moreover, the content of chlorophyll (45%) and carotenoids (46.7%) was enhanced using this organic fertilizer. In terms of mineral elements, the increment was observed in zinc (Zn) (58.23%) and potassium (K) (28.12%) amounts in treated nuts. Additionally, foliar application of fulvic acid led to elevated levels of soluble carbohydrates and proteins in treated nuts. CONCLUSIONS: In the present study, application of fulvic acid resulted in enhancement of antioxidant activity and quality traits of pistachio nut through an increase in total phenol, flavonoids, chlorophyll, carotenoids, K, Zn, and also activity of antioxidant enzymes. Therefore, use of fulvic acid emerges as a promising strategy to enhance the quality and nutritional attributes of pistachios, contributing to sustainable agricultural practices and improved crop outcomes.


Assuntos
Antioxidantes , Benzopiranos , Pistacia , Antioxidantes/análise , Flavonoides/análise , Fenóis , Carotenoides , Valor Nutritivo , Clorofila
13.
Sci Rep ; 14(1): 8081, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582923

RESUMO

Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher ß-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the ß-carotene hydroxylase gene crtZ and ß-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-ß-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.


Assuntos
Carotenoides , Corynebacterium glutamicum , Carotenoides/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Xantofilas/metabolismo , beta Caroteno/metabolismo , Engenharia Metabólica/métodos
14.
Acta Neurobiol Exp (Wars) ; 84(1): 59-69, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587323

RESUMO

Nicotine is a psychostimulant that induces neurochemical and behavioral changes upon chronic administration, leading to neurodegenerative conditions associated with smoking. As of now, no preventive or therapeutic strategies are known to counteract nicotine­induced neurodegeneration. In this study, we explore the neuroprotective effects of crocin, a bioactive agent commonly found in saffron - a spice derived from the flower of Crocus sativus - using a rat model. The dose­dependent effects of crocin were evaluated in nicotine­induced neurodegeneration and compared with a control group. Neurobehavioral changes, assessed through the elevated plus maze, the open field test, the forced swim test, and the Morris water maze, as well as oxidative stress in the hippocampus, were evaluated. Interestingly, nicotine administration resulted in depression, anxiety, and abnormal motor and cognitive functions, while crocin treatment protected the rat brain from these abnormalities. The beneficial effects of crocin were associated with reduced oxidative stress biomarkers such as malondialdehyde, along with increases in superoxide dismutase, glutathione peroxidase, and glutathione reductase activities. These results demonstrate that crocin can mitigate nicotine­induced neurodegeneration by reducing oxidative stress, potentially offering a protective measure against neurodegenerative effects in smokers.


Assuntos
Crocus , Ratos , Animais , Crocus/química , Crocus/metabolismo , Nicotina/farmacologia , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
15.
Methods Mol Biol ; 2798: 141-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587740

RESUMO

Carotenoids and tocopherols are among the most powerful lipophilic antioxidants accumulated in fruit and vegetable crops. This chapter describes a method for the separation and quantification of carotenoids/chlorophylls and tocopherols based on microextraction followed by reverse- and normal-phase HPLC, respectively. Using this method, high-throughput, accurate analysis of these compounds can be performed in leaf and fruit samples.


Assuntos
Carotenoides , Tocoferóis , Frutas , Vitamina E , Antioxidantes
16.
Sci Prog ; 107(2): 368504241242282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614468

RESUMO

This research aims to optimize the silk and wool dyeing process using natural dyes from Bixa orellana (annatto) through response surface methodology. Central composite design experiments highlight the significant enhancement of color outcomes achieved through microwave treatment. For silk, the optimal conditions (80 °C for 40 min) with annatto extract yield a color strength (K/S) of 17.8588, while wool achieves a K/S of 7.5329. Introducing eco-friendly bio-mordants, such as pomegranate peel and red sumac tannins, enhances color strength. Pre-dyeing treatments with 2% red sumac, 1.5% pomegranate peel, and weld flower extracts for silk produce high color strength, with K/S values of 16.4063, 16.3784, and 12.1658, respectively. Post-dyeing, the K/S values increase to 40.1178, 17.4779, and 21.6494. Wool yarn exhibits similar improvements, with pre-dyeing K/S values of 13.1353, 13.5060, and 16.3232, escalating to 10.5892, 15.3141, and 23.4850 post-dyeing. Furthermore, this research underscores improved colorfastness properties, including notable enhancements in light, wash, and rubbing fastness for both silk fabric and wool yarn. These findings underscore the efficacy of the proposed sustainable dyeing methods, offering valuable insights for eco-friendly textile production.


Assuntos
Carotenoides , Árvores , , Animais , Bixaceae , Têxteis , Sementes , Seda
17.
J Nutr Sci ; 13: e20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618284

RESUMO

Dietary carotenoids are associated with lower risk of CHD. Assessment of dietary carotenoid intake using questionnaires can be susceptible to measurement error. Consequently, there is a need to validate data collected from FFQs which measure carotenoid intake. This study aimed to assess the performance of the Cardio-Med Survey Tool (CMST)-FFQ-version 2 (v2) as a measure of dietary carotenoid intake over 12-months against plasma carotenoids biomarkers and 7-Day Food Records (7DFR) in an Australian cardiology cohort. Dietary carotenoid intakes (ß- and α-carotene, lycopene, ß-cryptoxanthin and lutein/zeaxanthin) were assessed using the 105-item CMST-FFQ-v2 and compared to intakes measured by 7DFR and plasma carotenoid concentrations. Correlation coefficients were calculated between each dietary method, and validity coefficients (VCs) were calculated between each dietary method and theoretical true intake using the 'methods of triads'. Thirty-nine participants aged 37-77 years with CHD participated in the cross-sectional study. The correlation between FFQ and plasma carotenoids were largest and significant for ß-carotene (0.39, p=0.01), total carotenoids (0.37, p=0.02) and ß-cryptoxanthin (0.33, p=0.04), with weakest correlations observed for α-carotene (0.21, p=0.21) and lycopene (0.21, p=0.21). The FFQ VCs were moderate (0.3-0.6) or larger for all measured carotenoids. The strongest were observed for total carotenoids (0.61) and ß-carotene (0.59), while the weakest were observed for α-carotene (0.33) and lycopene (0.37). In conclusion, the CMST-FFQ-v2 measured dietary carotenoids intakes with moderate confidence for most carotenoids, however, there was less confidence in ability to measure α-carotene and lycopene intake, thus further research is warranted using a larger sample.


Assuntos
Cardiologia , beta Caroteno , Humanos , Licopeno , beta-Criptoxantina , Estudos Transversais , Austrália , Carotenoides , Biomarcadores
18.
Arch Microbiol ; 206(4): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519760

RESUMO

Microbial production of carotenoids has gained significant interest for its cost-effectiveness and sustainable nature. This study focuses on 47 red-pigmented yeasts isolated from sediments and plant parts of 13 species of mangrove trees. The relative abundance and distribution of these yeasts varied with plant species and plant parts. The highest number of red yeasts was associated with the mangrove plant Avicennia officinalis (32%). Notably, the leaves harbored the highest percentage (45%) of carotenogenic yeasts, and definite compartmentalization of these yeast species was noticed in mangrove plant parts. All the isolates were molecularly identified and they belonged to the genera of Rhodotorula, Rhodosporidiobolus, and Cryptococcus. The diversity of the pigmented yeasts isolated from A. officinalis was found to be the greatest. Among these strains, Rhodotorula mucilaginosa PV 8 was identified as the most potent producer of carotenoid pigment. Under optimized conditions of physical parameters - 28 °C, pH 5, and 15% salinity led to biomass production of 9.2 ± 0.12 g/L DCW and a pigment yield of 194.78 µg/g. The pigment produced by PV 8 was identified as ß-carotene by thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR). This ß-carotene demonstrated strong antioxidant activity. Moreover, the carotenoid displayed promising antibacterial activity against multidrug-resistant organisms, including Aeromonas sp. and Vibrio sp. In vitro studies revealed the probiotic traits of PV 8. The cytotoxicity of R. mucilaginosa PV 8 was assessed in the invertebrate model Artemia salina and the survival rate showed that it was non-toxic. Furthermore, the ß-carotene from PV 8 demonstrated the ability to transfer its vibrant color to various food products, maintaining color stability even under varied conditions. This research underscores the potential of R. mucilaginosa PV 8, as a versatile and valuable resource for the production of carotenoids.


Assuntos
Ecossistema , Rhodotorula , beta Caroteno , beta Caroteno/análise , Bioprospecção , Espectroscopia de Infravermelho com Transformada de Fourier , Leveduras , Carotenoides/análise
19.
J Biotechnol ; 386: 52-63, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38548021

RESUMO

The high market potential imposed by natural carotenoids has turned the scientific interest in search for new strains, capable of synthesizing a wide spectrum of these pigments. In this study, Rhodosporidium paludigenum NCYC 2663 and 2664 were investigated for carotenoids production and lipid accumulation utilizing different carbon sources (glucose, fructose, sucrose, mixture of glucose: galactose). Strain R. paludigenum 2663 produced the highest total carotenoids titer (2.21 mg/L) when cultivated on sucrose, together with 4 g/L lipids (30% w/w content) and 7 g/L exopolysaccharides. In the case of R. paludigenum 2664, glucose favored the production of 2.93 mg/L total carotenoids and 1.57 g/L lipids (31.8% w/w content). Analysis of the chemical profile during fermentation revealed that ß-carotene was the prominent carotenoid. Strain 2663 co-produced γ-carotene, torulene and torularhodin in lower amounts, whereas 2664 synthesized almost exclusively ß-carotene. The produced lipids from strain 2663 were rich in oleic acid, while the presence of linoleic acid was also detected in the lipoic fraction from strain 2664. The obtained carotenoid extracts exhibited antioxidant (IC50 0.14 mg/mL) and high antimicrobial activity, against common bacterial and fungal pathogenic strains. The results of this study are promising for the utilization of biotechnologically produced carotenoids in food applications.


Assuntos
Anti-Infecciosos , Rhodotorula , beta Caroteno , Antioxidantes/farmacologia , Carotenoides , Leveduras , Ácido Oleico , Anti-Infecciosos/farmacologia , Sacarose , Glucose
20.
Int J Biol Macromol ; 265(Pt 1): 130756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462118

RESUMO

The risk of radiation exposure increases with the development of nuclear energy and technology, and radiation protection receives more and more attention from public health and safety. However, the numerous adverse effects and low drug utilization limit the practical applications of radioprotective agents. In this study, we developed a biogenic crocetin-crosslinked chitosan nanoparticle with high stability and drug loading for efficient radioprotection. In detail, the nanoparticles were prepared using the natural antioxidant crocetin as a cross-linking reagent in amidation reactions of chitosan and mPEG-COOH. The nanoparticles exhibit a quick scavenging ability for common reactive oxygen species and reactive nitrogen in vitro. Meanwhile, cellular experiments demonstrate the good biocompatibility of the nanoparticles and the alleviation of radiation damage by scavenging reactive oxygen species, reducing apoptosis, and inhibiting DNA damage, etc. Importantly, the nanoparticles are effective in mitigating oxidative damage in major organs and maintaining peripheral blood cell content. In addition, they perform better radioprotective properties than free drug due to the significant extension of the blood half-life of crocetin in vivo from 10 min to 5 h. This work proposes a drug-crosslinking strategy for the design of a highly efficient radioprotective agent, which exhibits a promising prospect in the fields of nuclear emergency and public health.


Assuntos
Carotenoides , Quitosana , Nanopartículas , Proteção Radiológica , Protetores contra Radiação , Vitamina A/análogos & derivados , Quitosana/farmacologia , Espécies Reativas de Oxigênio , Protetores contra Radiação/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...