Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.614
Filtrar
1.
Bull Environ Contam Toxicol ; 112(4): 63, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615298

RESUMO

Research on thermal receipts has previously focused on the toxic effects of dermal exposure from the most publicized developers (e.g., bisphenol A (BPA) and bisphenol S (BPS)), while no studies have reported on the other solvent-extractable compounds therein. Diphenyl sulfone (DPS) is a sensitizer added to thermal receipts, but little is known about DPS concentrations in receipts or potential toxicity. Here, we quantified BPA, BPS, and DPS concentrations and tentatively identified the solvent-extractable compounds of thermal receipts collected from three South Dakota (USA) cities during 2016-2017. An immortalized chicken hepatic cell line, cultured as 3D spheroids, was used to screen effects of DPS, BPS, and 17ß estradiol (E2; 0.1-1000 µM) on cell viability and gene expression changes. These chemicals elicited limited cytotoxicity with LC50 values ranging from 113 to 143 µM, and induced dysregulation in genes associated with lipid and bile acid homeostasis. Taken together, this study generated novel information on solvent-extractable chemicals from thermal receipts and toxicity data for DPS.


Assuntos
Compostos Benzidrílicos , Compostos de Bifenilo , Fenóis , Sulfonas , Sulfonas/toxicidade , Compostos Benzidrílicos/toxicidade , Solventes
2.
Environ Monit Assess ; 196(5): 455, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625667

RESUMO

This study is to understand the fate and ecological consequences of pyroxasulfone in aridisols of Punjab, a detailed dissipation study in soil, its influence on soil enzymes, microbial count and succeeding crops was evaluated. Half-lives (DT50) increased with an increase in the application rate of pyroxasulfone. Dissipation of pyroxasulfone decreased with increase in organic matter content of soil and was slower in clay loam soil (DT50 12.50 to 24.89) followed by sandy loam (DT50 8.91 to 17.78) and loamy sand soil (DT50 6.45 to 14.89). Faster dissipation was observed under submerged conditions (DT50 2.9 to 20.99 days) than under field capacity conditions (DT50 6.45 to 24.89 days). Dissipation increased with increase in temperature with DT50 varying from 6.46 to 24.88, 4.87 to 22.89 and 2.97 to 20.99 days at 25 ± 2, 35 ± 2 and 45 ± 2 °C, respectively. Dissipation was slower under sterile conditions and about 23.87- to 33.74-fold increase in DT50 was observed under sterile conditions as compared to non-sterile conditions. The application of pyroxasulfone showed short-lived transitory effect on dehydrogenase, alkaline phosphatase and soil microbial activity while herbicide has non-significant effect on soil urease activity. PCA suggested that dehydrogenase and bacteria were most sensitive among enzymatic and microbial activities. In efficacy study, pyroxasulfone effectively controlled Phalaris minor germination, with higher efficacy in loamy sand soil (GR50 2.46 µg mL-1) as compared to clay loam soil (GR50 5.19 µg mL-1).


Assuntos
Isoxazóis , Areia , Solo , Sulfonas , Argila , Monitoramento Ambiental , Oxirredutases
3.
Protein Sci ; 33(5): e4977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591646

RESUMO

Chemical warfare nerve agents and pesticides, known as organophosphorus compounds inactivate cholinesterases (ChEs) by phosphorylating the serine hydroxyl group located at the active site of ChEs. Over the course of time, phosphorylation is followed by loss of an organophosphate-leaving group and the bond with ChEs becomes irreversible, a process known as aging. Differently, structurally related irreversible catalytic poisons bearing sulfur instead of phosphorus convert ChEs in its aged form only by covalently binding to the key catalytic serine. Kinetic and crystallographic studies of the interaction between Torpedo californica acetylcholinesterase (TcAChE) and a small organosulfonate, methanesulfonyl fluoride (MSF), indeed revealed irreversibly methylsulfonylated serine 200, to be isosteric with the bound aged sarin/soman analogues. The potent bulky reversible inhibitor 7-bis-tacrine (BTA) adopts, in the active site of the crystal structure of the MSF-enzyme adduct, a location and an orientation that closely resemble the one being found in the crystal structure of the BTA-enzyme complex. Remarkably, the presence of BTA accelerates the rate of methanesulfonylation by a factor of two. This unexpected result can be explained on the basis of two facts: i) the steric hindrance exerted by BTA to MSF in accessing the active site and ii) the acceleration of the MSF-enzyme adduct formation as a consequence of the lowering of the rotational and translational degrees of freedom in the proximity of the catalytic serine. It is well known that pralidoxime (2-Pyridine Aldoxime Methyl chloride, 2-PAM) alone or in the presence of the substrate acetylcholine cannot reactivate the active site serine of the TcAChE-MSF adduct. We show that the simultaneous presence of 2-PAM and the additional neutral oxime, 2-[(hydroxyimino)methyl]-l-methylimidazol (2-HAM), triggers the reactivation process of TcAChE within the hour timescale. Overall, our results pave the way toward the likely use of a cocktail of distinctive oximes as a promising recipe for an effective and fast reactivation of aged cholinesterases.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Compostos de Pralidoxima , Sulfonas , Taurina/análogos & derivados , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Oximas/química , Serina
4.
Mol Biol Rep ; 51(1): 502, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598020

RESUMO

BACKGROUND: Thyroid cancer, originating in the neck's thyroid gland, encompasses various types. Genetic mutations, particularly in BRAF and RET genes are crucial in its development. This study investigates the association between BRAF (rs113488022) and RET (rs77709286) polymorphisms and thyroid cancer risk in the Khyber Pakhtunkhwa (KP) population. METHODS: Blood samples from 100 thyroid cancer patients and 100 healthy controls were genotyped using ARMS-PCR followed by gel electrophoresis and statistical analysis. RESULTS: Analysis revealed a significant association between the minor allele T of BRAF (rs113488022) and thyroid cancer risk (P = 0.0001). Both genotypes of BRAF (rs113488022) showed significant associations with thyroid cancer risk (AT; P = 0.0012 and TT; P = 0.045). Conversely, the minor allele G of RET (rs77709286) exhibited a non-significant association with thyroid cancer risk (P = 0.2614), and neither genotype showed significant associations (CG; P = 0.317, GG; P = 0.651). Demographic and clinical parameters analysis using SPSS showed a non-significant association between BRAF and RET variants and age group (P = 0.878 and P = 0.536), gender (P = 0.587 and P = 0.21), tumor size (P = 0.796 and P = 0.765), or tumor localization (P = 0.689 and P = 0.727). CONCLUSION: In conclusion, this study emphasizes the significant association between BRAF polymorphism and thyroid cancer risk, while RET polymorphism showed a less pronounced impact. Further validation using larger and specific datasets is essential to establish conclusive results.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Sulfonas , Neoplasias da Glândula Tireoide , Uridina/análogos & derivados , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/genética , Alelos , Proteínas Proto-Oncogênicas c-ret/genética
5.
Luminescence ; 39(4): e4734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576335

RESUMO

Simultaneously improving the stability and photoluminescence quantum yield (PLQY) of all inorganic perovskite nanocrystals (NCs) is crucial for their practical utilization in various optoelectronic devices. Here, CsPbBr3 NCs coated with polyethersulfone (PES) were prepared via an in-situ co-precipitation method. The sulfone groups in PES bind to undercoordinated lead ion (Pb2+) on the CsPbBr3 NCs, resulting in significant reduction of surface defects, thus enhancing the PLQY from 74.2% to 88.3%. Meanwhile, the PES-coated NCs exhibit high water resistance and excellent heat and light stability, maintaining over 85% of the initial PL intensity under thermal aging (70°C, 4 h) and continuous 365 nm ultraviolet (UV) light irradiation (24 W, 8 h) conditions. By contrast, the PL intensity of the control NCs dramatically dropped to less than 40%. Finally, a diode emitting bright white light was fabricated utilizing the PES-coated CsPbBr3 NCs, which exhibits a color gamut of ~110% NTSC standard.


Assuntos
Compostos de Cálcio , Nanopartículas , Óxidos , Polímeros , Titânio , Sulfonas
6.
PLoS One ; 19(3): e0301133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547097

RESUMO

PURPOSE: Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), which has a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Piperine (Pip) is an extract of plants with powerful anti-inflammatory effects, however, the function of Pip in NASH remains elusive. Here, we aim to explore the role of Pip in NASH and to find the possible mechanisms. METHODS: Methionine and choline-deficient (MCD) diets were used to induce steatohepatitis, methionine- and choline-sufficient (MCS) diets were used as the control. After Pip treatment, H&E staining, Oil Red O staining, hepatic triglyceride (TG) content and F4/80 expression were performed to analysis liver steatosis and inflammation; Masson's staining, COL1A1 and α-SMA were detected liver fibrosis. Lipopolysaccharide (LPS) -treated AML12 cells were used to as the cell model to induce pyroptosis. Then, pyroptosis-related proteins, IL-1ß and LDH release were detected in vivo and in vitro. Finally, NF-κB inhibitor, BAY11-7082, was used to further demonstrate the mechanism of Pip in NASH. RESULTS: The study found that Pip alleviated liver steatosis, inflammation, hepatocyte injury, and fibrosis in mice fed with MCD diets. Moreover, the pyroptosis markers (NLRP3, ASC, caspase-1 p20, and GSDMD), IL-1ß and LDH release were decreased by Pip treatment. NF-κB activation was suppressed by Pip treatment and pyroptosis-related proteins were down regulated by BAY11-7082. CONCLUSION: Pip ameliorates NASH progression, and the therapeutical effect was associated with inhibition of hepatocyte pyroptosis induced by NF-κB.


Assuntos
Alcaloides , Benzodioxóis , Nitrilas , Hepatopatia Gordurosa não Alcoólica , Piperidinas , Alcamidas Poli-Insaturadas , Sulfonas , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , NF-kappa B/metabolismo , Piroptose , Fígado/metabolismo , Cirrose Hepática/patologia , Fibrose , Inflamação/patologia , Colina/metabolismo , Hepatócitos/metabolismo , Metionina/metabolismo , Camundongos Endogâmicos C57BL
7.
J Agric Food Chem ; 72(13): 6931-6941, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514379

RESUMO

Tembotrione is a triketone herbicide widely used for broad-spectrum weed control in corn but not registered for use in wheat. A wide collection of spring, winter, and EMS-derived mutant lines of wheat was evaluated for their response to tembotrione treatment. Two winter wheat (WW) genotypes (WW-1 and WW-2) were found to be least sensitive to this herbicide, surviving >6 times the field recommended dose (92 g ai ha-1) compared to the most sensitive genotype (WW-24). Further, HPLC analysis using [14C] tembotrione suggested that both WW-1 and WW-2 metabolized tembotrione rapidly to nontoxic metabolites. Pretreatment with a P450 inhibitor (malathion) followed by tembotrione application increased the sensitivity of WW-1 and WW-2 genotypes to this herbicide, suggesting likely involvement of P450 enzymes in metabolizing tembotrione similar to corn. Overall, our results suggest that the genotypes WW-1 and WW-2 can potentially be used to develop tembotrione-resistant wheat varieties.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Triticum/genética , Triticum/metabolismo , Cicloexanonas/farmacologia , Sulfonas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Zea mays/metabolismo
8.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474118

RESUMO

c-Met is a tyrosine-kinase receptor, and its aberrant activation plays critical roles in tumorigenesis, invasion, and metastatic spread in many human tumors. PHA-665752 (PHA) is an inhibitor of c-Met and has antitumor effects on many hematological malignancies and solid cancers. However, the activation and expression of c-Met and its role and the antitumor effect of PHA on human oral squamous cell carcinoma (OSCC) cells remain unclear. Here, we investigated the activation and expression of c-Met and the effects of PHA on the growth of a highly tumorigenic HSC-3 human OSCC cell line with high c-Met phosphorylation and expression. Of note, c-Met was highly expressed and phosphorylated on Y1234/1235 in HSC-3 cells, and PHA treatment significantly suppressed the growth and induced apoptosis of these cells. Moreover, PHA that inhibited the phosphorylation (activation) of c-Met further caused the reduced phosphorylation and expression levels of Src, protein kinase B (PKB), mammalian target of rapamycin (mTtor), and myeloid cell leukemia-1 (Mcl-1) in HSC-3 cells. In addition, the antiangiogenic property of PHA in HSC-3 cells was shown, as evidenced by the drug's suppressive effect on the expression of hypoxia-inducible factor-1α (HIF-1α), a critical tumor angiogenic transcription factor. Importantly, genetic ablation of c-Met caused the reduced growth of HSC-3 cells and decreased Src phosphorylation and HIF-1α expression. Together, these results demonstrate that c-Met is highly activated in HSC-3 human oral cancer cells, and PHA exhibits strong antigrowth, proapoptotic, and antiangiogenic effects on these cells, which are mediated through regulation of the phosphorylation and expression of multiple targets, including c-Met, Src, PKB, mTOR, Mcl-1, and HIF-1α.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Sulfonas , Humanos , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Indóis , Subunidade alfa do Fator 1 Induzível por Hipóxia , Linhagem Celular Tumoral
9.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474448

RESUMO

Prosthetic infections are associated with high morbidity, mortality, and relapse rates, making them still a serious problem for implantology. Staphylococcus aureus is one of the most common bacterial pathogens causing prosthetic infections. In response to the increasing rate of bacterial resistance to commonly used antibiotics, this work proposes a method for combating pathogenic microorganisms by modifying the surfaces of synthetic polymeric biomaterials using proteolytic enzyme inhibitors (serine protease inhibitors-4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and puromycin). While using techniques based on the immobilization of biologically active molecules, it is important to monitor the changes occurring on the surface of the modified biomaterial, where spectroscopic techniques (e.g., FTIR) are ideal. ATR-FTIR measurements demonstrated that the immobilization of both inhibitors caused large structural changes on the surface of the tested vascular prostheses (polyester or polytetrafluoroethylene) and showed that they were covalently bonded to the surfaces of the biomaterials. Next, the bactericidal and antibiofilm activities of the tested serine protease inhibitors were determined using the CLSM microscopic technique with fluorescent staining. During LIVE/DEAD analyses, a significant decrease in the formation of Staphylococcus aureus biofilm after exposure to selected concentrations of native inhibitors (0.02-0.06 mg/mL for puromycin and 0.2-1 mg/mL for 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride) was demonstrated.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Sulfonas , Humanos , Prótese Vascular , Antibacterianos/farmacologia , Biofilmes , Inibidores de Serino Proteinase/farmacologia , Staphylococcus aureus , Materiais Biocompatíveis , Puromicina , Peptídeo Hidrolases
10.
Chemosphere ; 353: 141542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428535

RESUMO

The escalating global concern regarding antibiotic pollution necessitates the development of advanced water treatment strategies. This study presents an innovative approach through the fabrication and evaluation of a Polyethersulfone (PES) membrane adorned with GO-TiO2 nanocomposites. The objective is to enhance the removal efficiency of various antibiotics, addressing the challenge of emerging organic compounds (EOCs) in water systems. The nanocomposite membranes, synthesized via the phase inversion method, incorporate hydrophilic agents, specifically GO-TiO2 nanocomposites and Polyvinylpyrrolidone (PVP). The resultant membranes underwent comprehensive characterization employing AFM, EDS, tensile strength testing, water contact angle measurements, and FESEM to elucidate their properties. Analysis revealed a substantial improvement in the hydrophilicity of the modified membranes attributed to the presence of hydroxyl groups within the GO-TiO2 structure. AFM images demonstrated an augmentation in surface roughness with increasing nanocomposite content. FESEM images unveiled structural modifications, leading to enhanced porosity and augmented water flux. The pure water flux elevated from 0.980 L/m2.h-1 for unmodified membranes to approximately 6.85 L/m2.h-1 for membranes modified with 2 wt% nanocomposites. Membrane performance analysis indicated a direct correlation between nanocomposite content and antibiotic removal efficiency, ranging from 66.52% to 89.81% with 4 wt% nanocomposite content. Furthermore, the nanocomposite-modified membrane exhibited heightened resistance to fouling. The efficacy of the membrane extended to displaying potent antibacterial properties against microbial strains, including S. aureus, E. coli, and Candida. This study underscores the immense potential of GO-TiO2 decorated PES membranes as a sustainable and efficient solution for mitigating antibiotic contamination in water systems. The utilization of nanocomposite membranes emerges as a promising technique to combat the presence of EOC pollutants, particularly antibiotics, in water bodies, thus addressing a critical environmental concern.


Assuntos
Nanocompostos , Polímeros , Povidona , Sulfonas , Antibacterianos/farmacologia , Azitromicina , Amoxicilina , Ciprofloxacina , Escherichia coli , Staphylococcus aureus , Nanocompostos/química , Membranas Artificiais
11.
J Zoo Wildl Med ; 55(1): 73-85, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453490

RESUMO

Firocoxib is a COX-2-selective nonsteroidal anti-inflammatory drug (NSAID) with limited effects on COX-1, which means it likely has fewer side effects than typically associated with other NSAIDs. This study determined possible doses of firocoxib based on single- and multidose pharmacokinetic trials conducted in 10 Asian elephants (Elephas maximus). Initially, two single oral dose trials (0.01 and 0.1 mg/kg) of a commercially available tablet (n = 6) and paste (n = 4) formulation were used to determine a preferred dose. The 0.1 mg/kg dose was further evaluated via IV single dose (n = 3) and oral multidose trials (tablets n = 6; paste n = 4). Serum peak and trough firocoxib concentrations were also evaluated in Asian elephants (n = 4) that had been being treated for a minimum of 90 consecutive days. Key pharmacokinetic parameters for the 0.1 mg/kg single-dose trials included mean peak serum concentrations of 49 ± 3.3 ng/ml for tablets and 62 ± 14.8 ng/ml for paste, area under the curve (AUC) of 1,332 ± 878 h*mg/ml for tablets and 1,455 ± 634 h*mg/ml for paste, and half-life (T1/2) of 34.3 ± 30.3 h for tablets and 19.9 ± 12.8 h for paste. After 8 d of dosing at 0.1 mg/kg every 24 h, pharmacokinetic parameters stabilized to an AUC of 6,341 ± 3,003 h*mg/ml for tablets and 5,613 ± 2,262 for paste, and T1/2 of 84.4 ± 32.2 h for tablets and 62.9 ± 2.3 h for paste. Serum COX inhibition was evaluated in vitro and ex vivo in untreated elephant plasma, where firocoxib demonstrated preferential inhibition of COX-2. No adverse effects from firocoxib administration were identified in this study. Results suggest administering firocoxib to Asian elephants at a dose of 0.1 mg/kg orally, using either tablet or paste formulations, every 24 h.


Assuntos
4-Butirolactona/análogos & derivados , Elefantes , Sulfonas , Animais , Ciclo-Oxigenase 2 , Monitoramento de Medicamentos , Administração Oral , Anti-Inflamatórios não Esteroides , Comprimidos , Área Sob a Curva , Estudos Cross-Over , Meia-Vida
12.
J Transl Med ; 22(1): 234, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433235

RESUMO

INTRODUCTION: The study of resistance-causing mutations in oncogene-driven tumors is fundamental to guide clinical decisions. Several point mutations affecting the ROS1 kinase domain have been identified in the clinical setting, but their impact requires further exploration, particularly in improved pre-clinical models. Given the scarcity of solid pre-clinical models to approach rare cancer subtypes like ROS1 + NSCLC, CRISPR/Cas9 technology allows the introduction of mutations in patient-derived cell lines for which resistant variants are difficult to obtain due to the low prevalence of cases within the clinical setting. METHODS: In the SLC34A2-ROS1 rearranged NSCLC cell line HCC78, we knocked-in through CRISPR/Cas9 technology three ROS1 drug resistance-causing mutations: G2032R, L2026M and S1986Y. Such variants are located in different functional regions of the ROS1 kinase domain, thus conferring TKI resistance through distinct mechanisms. We then performed pharmacological assays in 2D and 3D to assess the cellular response of the mutant lines to crizotinib, entrectinib, lorlatinib, repotrectinib and ceritinib. In addition, immunoblotting assays were performed in 2D-treated cell lines to determine ROS1 phosphorylation and MAP kinase pathway activity. The area over the curve (AOC) defined by the normalized growth rate (NGR_fit) dose-response curves was the variable used to quantify the cellular response towards TKIs. RESULTS: Spheroids derived from ROS1G2032R cells were significantly more resistant to repotrectinib (AOC fold change = - 7.33), lorlatinib (AOC fold change = - 6.17), ceritinib (AOC fold change = - 2.8) and entrectinib (AOC fold change = - 2.02) than wild type cells. The same cells cultured as a monolayer reflected the inefficacy of crizotinib (AOC fold change = - 2.35), entrectinib (AOC fold change = - 2.44) and ceritinib (AOC fold change = - 2.12) in targeting the ROS1 G2032R mutation. ROS1L2026M cells showed also remarkable resistance both in monolayer and spheroid culture compared to wild type cells, particularly against repotrectinib (spheroid AOC fold change = - 2.19) and entrectinib (spheroid AOC fold change = - 1.98). ROS1S1986Y cells were resistant only towards crizotinib in 2D (AOC fold change = - 1.86). Overall, spheroids showed an increased TKI sensitivity compared to 2D cultures, where the impact of each mutation that confers TKI resistance could be clearly distinguished. Western blotting assays qualitatively reflected the patterns of response towards TKI observed in 2D culture through the levels of phosphorylated-ROS1. However, we observed a dose-response increase of phosphorylated-Erk1/2, suggesting the involvement of the MAPK pathway in the mediation of apoptosis in HCC78 cells. CONCLUSION: In this study we knock-in for the first time in a ROS1 + patient-derived cell line, three different known resistance-causing mutations using CRISPR/Cas9 in the endogenous translocated ROS1 alleles. Pharmacological assays performed in 2D and 3D cell culture revealed that spheroids are more sensitive to TKIs than cells cultured as a monolayer. This direct comparison between two culture systems could be done thanks to the implementation of normalized growth rates (NGR) to uniformly quantify drug response between 2D and 3D cell culture. Overall, this study presents the added value of using spheroids and positions lorlatinib and repotrectinib as the most effective TKIs against the studied ROS1 resistance point mutations.


Assuntos
Aminopiridinas , Benzamidas , Carcinoma Pulmonar de Células não Pequenas , Indazóis , Lactamas , Neoplasias Pulmonares , Pirazóis , Pirimidinas , Sulfonas , Humanos , Proteínas Tirosina Quinases/genética , Crizotinibe , Sistemas CRISPR-Cas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas , Resistência a Medicamentos
13.
ACS Chem Biol ; 19(4): 962-972, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38509779

RESUMO

Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and selective small-molecule inhibitor of the NLRP3 pathway and has been validated in numerous species and disease models. Although the capacity of MCC950 to block NLRP3 signaling is well-established, it is still critical to identify the mechanism of action and molecular targets of MCC950 to inform and derisk drug development. Quantitative proteomics performed in disease-relevant systems provides a powerful method to study both direct and indirect pharmacological responses to small molecules to elucidate the mechanism of action and confirm target engagement. A comprehensive target deconvolution campaign requires the use of complementary chemical biology techniques. Here we applied two orthogonal chemical biology techniques: compressed Cellular Thermal Shift Assay (CETSA) and photoaffinity labeling chemoproteomics, performed under biologically relevant conditions with LPS-primed THP-1 cells, thereby deconvoluting, for the first time, the molecular targets of MCC950 using chemical biology techniques. In-cell chemoproteomics with inlysate CETSA confirmed the suspected mechanism as the disruption of inflammasome formation via NLRP3. Further cCETSA (c indicates compressed) in live cells mapped the stabilization of NLRP3 inflammasome pathway proteins, highlighting modulation of the targeted pathway. This is the first evidence of direct MCC950 engagement with endogenous NLRP3 in a human macrophage cellular system using discovery proteomics chemical biology techniques, providing critical information for inflammasome studies.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteômica , Sulfonas/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular , Furanos/farmacologia , Modelos Animais de Doenças
14.
Sci Rep ; 14(1): 5338, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438437

RESUMO

Pesticides are indispensable tools in modern agriculture for enhancing crop productivity. However, the inherent toxicity of pesticides raises significant concerns regarding human exposure, particularly among agricultural workers. This study investigated the exposure and associated risks of two commonly used pesticides in open-field pepper cultivation, namely, chlorothalonil and flubendiamide, in the Republic of Korea. We used a comprehensive approach, encompassing dermal and inhalation exposure measurements in agricultural workers during two critical scenarios: mixing/loading and application. Results revealed that during mixing/loading, dermal exposure to chlorothalonil was 3.33 mg (0.0002% of the total active ingredient [a.i.]), while flubendiamide exposure amounted to 0.173 mg (0.0001% of the a.i.). Conversely, dermal exposure increased significantly during application to 648 mg (chlorothalonil) and 93.1 mg (flubendiamide), representing 0.037% and 0.065% of the total a.i., respectively. Inhalation exposure was also evident, with chlorothalonil and flubendiamide exposure levels varying across scenarios. Notably, the risk assessment using the Risk Index (RI) indicated acceptable risk of exposure during mixing/loading but raised concerns during application, where all RIs exceeded 1, signifying potential risk. We suggest implementing additional personal protective equipment (PPE) during pesticide application, such as gowns and lower-body PPE, to mitigate these risks.


Assuntos
Fluorocarbonos , Nitrilas , Praguicidas , Ftalimidas , Piper nigrum , Sulfonas , Humanos , Fazendeiros , Medição de Risco , Benzamidas , Praguicidas/toxicidade
15.
Talanta ; 273: 125870, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460423

RESUMO

Pyroxasulfone is a selective, systemic, pre-emergence herbicide which acts to inhibit weeds in potato, coffee, sugar cane, eucalyptus, and soybean plantations, among others. This active ingredient was classified by Brazilian legislation as a very dangerous product for the environment, and to date there are no studies involving the development of extraction methods for monitoring this compound in environmental matrices. Therefore, the objective of this study was to optimize and validate liquid-liquid extraction with low temperature purification followed by a gas chromatography coupled to mass spectrometry analysis to determine this herbicide in honey samples. The results showed that the best extractor phase was acetonitrile and ethyl acetate (6.5 mL:1.5 mL), with recovery rates close to 100% and relative standard deviations below 11%. The validation proved that the extraction method was selective, precise, accurate and linear in the range of 3-225 µg kg-1, reaching a limit of quantification of 3 µg kg-1, with a -25.95% matrix effect. Monitoring on real samples did not reveal episodes of environmental contamination with pyroxasulfone residue.


Assuntos
Herbicidas , Mel , Isoxazóis , Sulfonas , Herbicidas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura , Mel/análise , Extração Líquido-Líquido , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida
16.
Int Immunopharmacol ; 131: 111803, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460298

RESUMO

Plasma cell mastitis (PCM) is a sterile inflammatory condition primarily characterized by periductal inflammation and ductal ectasia. Currently, there is a lack of non-invasive or minimally invasive treatment option other than surgical intervention. The NLRP3 inflammasome has been implicated in the pathogenesis and progression of various inflammatory diseases, however, its involvement in PCM has not yet been reported. In this study, we initially observed the pronounced upregulation of NLRP3 in both human and mouse PCM tissue and elucidated the mechanism underlying the attenuation of PCM through inhibition of NLRP3. We established the PCM murine model and collected samples on day 14, when inflammation reached its peak, for subsequent research purposes. MCC950, an NLRP3 inhibitor, was utilized to effectively ameliorate PCM by significantly reducing plasma cell infiltration in mammary tissue, as well as attenuate the expression of pro-inflammatory cytokines including IL-1ß, TNF-α, IL-2, and IL-6. Mechanistically, we observed that MCC950 augmented the function of myeloid-derived suppressor cells (MDSCs), which in turn inhibited the infiltration of plasma cells. Furthermore, it was noted that depleting MDSCs greatly compromised the therapeutic efficacy of MCC950. Collectively, our findings suggest that the administration of MCC950 has the potential to impede the progression of PCM by augmenting MDSCs both numerically and functionally, ultimately treating PCM effectively. This study provides valuable insights into the utilization of pharmacological agents for PCM treatment.


Assuntos
Indenos , Mastite , Células Supressoras Mieloides , Feminino , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Supressoras Mieloides/metabolismo , Plasmócitos/metabolismo , Sulfonas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonamidas/farmacologia , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Mastite/tratamento farmacológico , Furanos/uso terapêutico , Furanos/farmacologia
17.
Int Immunopharmacol ; 131: 111869, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492343

RESUMO

BACKGROUND AND PURPOSE: It has been reported activation of NLRP3 inflammasome after intracerebral hemorrhage (ICH) ictus exacerbates neuroinflammation and brain injury. We hypothesized that inhibition of NLRP3 by OLT1177 (dapansutrile), a novel NLRP3 inflammasome inhibitor, could reduce brain edema and attenuate brain injury in experimental ICH. METHODS: ICH was induced by injection of autologous blood into basal ganglia in mice models. Sixty-three C57Bl/6 male mice were randomly grouped into the sham, vehicle, OLT1177 (Dapansutrile, 200 mg/kg intraperitoneally) and treated for consecutive three days, starting from 1 h after ICH surgery. Behavioral test, brain edema, brain water content, blood-brain barrier integrity and vascular permeability, cell apoptosis, and NLRP3 and its downstream protein levels were measured. RESULTS: OLT1177 significantly reduced cerebral edema after ICH and contributed to the attenuation of neurological deficits. OLT1177 could preserve blood-brain barrier integrity and lessen vascular leakage. In addition, OLT1177 preserved microglia morphological shift and significantly inhibited the activation of caspase-1 and release of IL-1ß. We also found that OLT1177 can protect against neuronal loss in the affected hemisphere. CONCLUSIONS: OLT1177 (dapansutrile) could significantly attenuate the brain edema after ICH and effectively alleviate the neurological deficit. This result suggests that the novel NLRP3 inhibitor, OLT1177, might serve as a promising candidate for the treatment of ICH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Nitrilas , Sulfonas , Camundongos , Masculino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Lesões Encefálicas/metabolismo
18.
Eur J Med Chem ; 269: 116306, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471358

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a prevalent pathological condition characterised by the accumulation of fat in the liver. Almost one-third of the global population is affected by NAFLD, making it a significant health concern. However, despite its prevalence, there is currently no approved drug specifically designed for the treatment of NAFLD. To address this critical gap, researchers have been investigating potential targets for NAFLD drug development. One promising candidate is the liver isoform of pyruvate kinase (PKL). In recent studies, Urolithin C, an allosteric inhibitor of PKL, has emerged as a potential lead compound for therapeutic intervention. Building upon this knowledge, our team has conducted a comprehensive structure-activity relationship of Urolithin C. In this work, we have employed a scaffold-hopping approach, modifying the urolithin structure by replacing the urolithin carbonyl with a sulfone moiety. Our structure-activity relationship analysis has identified the sulfone group as particularly favourable for potent PKL inhibition. Additionally, we have found that the presence of catechol moieties on the two aromatic rings further improves the inhibitory activity. The most promising inhibitor from this new series displayed nanomolar inhibition, boasting an IC50 value of 0.07 µM. This level of potency rivals that of urolithin D and significantly surpasses the effectiveness of urolithin C by an order of magnitude. To better understand the molecular interactions underlying this inhibition, we obtained the crystal structure of one of the inhibitors complexed with PKL. This structural insight served as a valuable reference point, aiding us in the design of inhibitors.


Assuntos
Taninos Hidrolisáveis , Hepatopatia Gordurosa não Alcoólica , Piruvato Quinase , Humanos , Fígado , Sulfonas/farmacologia
19.
Am J Physiol Cell Physiol ; 326(4): C1106-C1119, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344766

RESUMO

Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.


Assuntos
Guanidinas , Lipopolissacarídeos , Miométrio , Canais de Potássio de Domínios Poros em Tandem , Trocador 1 de Sódio-Hidrogênio , Sulfonas , Animais , Feminino , Camundongos , Gravidez , Escherichia coli , Lipopolissacarídeos/toxicidade , Miométrio/metabolismo , RNA Interferente Pequeno/metabolismo , Contração Uterina/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo
20.
JCO Glob Oncol ; 10: e2300260, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359374

RESUMO

PURPOSE: Targeted therapies, such as crizotinib and ceritinib, have shown promising results in treating non-small cell lung cancer (NSCLC) with specific oncogenic drivers like anaplastic lymphoma kinase (ALK), c-ros (ROS1) oncogene, etc. This study aims to assess the cost-effectiveness of these therapies for patients with NSCLC in India. METHODS: The Markov model consisted of three health states: progression-free survival, progressive disease, and death. Lifetime costs and consequences were estimated for three treatment arms: crizotinib, ceritinib, and chemotherapy for patients with ALK- and ROS1-positive NSCLC. Incremental cost per quality-adjusted life-year (QALY) gained with crizotinib and ceritinib was compared to chemotherapy and assessed using a willingness-to-pay threshold of one-time per capita gross domestic product in India. RESULTS: The total lifetime cost per patient for ALK-positive NSCLC was ₹332,456 ($4,054 US dollars [USD]), ₹1,284,100 ($15,659 USD), and ₹2,337,779 ($28,509 USD) in the chemotherapy, crizotinib, and ceritinib arms, respectively. The mean QALYs lived per patient were 1.20, 2.21, and 3.34, respectively. For patients with ROS1-positive NSCLC, the total cost was ₹323,011 ($3,939 USD) and ₹1,763,541 ($21,507 USD) for chemotherapy and crizotinib, with mean QALYs lived per patient of 1.16 and 2.73, respectively. Nearly 92% and 81% reduction in the price of ceritinib and crizotinib is required to make it a cost-effective treatment option for ALK- and ROS1-positive NSCLC, respectively. CONCLUSION: Our study findings suggest that the prices of ceritinib and crizotinib need to be reduced significantly to justify their value for inclusion in India's publicly financed health insurance scheme for treatment of patients with locally advanced/metastatic ALK- and ROS1-positive NSCLC, respectively.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pirimidinas , Sulfonas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Quinase do Linfoma Anaplásico , Crizotinibe/uso terapêutico , Análise Custo-Benefício , Proteínas Tirosina Quinases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...