Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.774
Filtrar
1.
PLoS One ; 19(2): e0295165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315710

RESUMO

BACKGROUND: Healthcare waste produced in healthcare activities entails higher risk of infection and injuries than municipal waste. In developing countries healthcare waste has not received much attention and has been disposed of together with municipal wastes. Modern method of disposal of healthcare waste have been introduced to most healthcare institutions mismanagement and increased in production in public health centres in Ethiopia is important issues. The aim of the study was to assess the type of healthcare waste generation and quantification in selected public health centres in Addis Ababa, Ethiopia. METHODS: An institution based cross-sectional study were conducted from January to February 2018. Fifteen health centres in Addis Ababa City Administration were selected for this study. Data were collected by using by different color plastic bags (Black plastic bags for non-hazardous wastes, Yellow plastic bags for hazardous wastes and Yellow safety box for needles and Red bags for pharmaceutical wastes and toxic wastes). The collected wastes were measured by weighing scale and were written to data entry sheet. To assure the data quality calibration of weighing scale was made by the standard weight every morning. EPI INFO TM7 and IBM SPSS were used for data entry, cleaning and analysis. RESULTS: The mean healthcare waste generation was 10.64+5.79Kg/day of which 37.26% (3.96+2.20Kg/day) was general waste and 62.74% (6.68+4.29) was hazardous waste from the studies health centres. Total hazardous waste; sharps, infectious, pathological and pharmaceutical wastes constitutes mean (±SD) 0.97 ±1.03, 3.23 ± 2.60, 2.17±1.92 and 0.25 ±0.34 kg/day respectively. Healthcare waste 29.93% and 0.32% were generated from delivery and post-natal case team and nutrition and growth monitoring case team respectively. The annual mean+ SD of healthcare waste generation rate per health centres were 3807.53+ 2109.84 Kg/year. CONCLUSION: The finding in this study showed there was an increased in hazardous healthcare waste in amount as compared to the WHO standard 85% non-hazardous waste and 10% hazardous waste and 5% toxic wastes. The healthcare waste management practices about segregation, collection, transportation and disposal at the source is crucial to decrease in quantity. Generally unselective handling and disposal of healthcare wastes is a concern.


Assuntos
Eliminação de Resíduos de Serviços de Saúde , Resíduos de Serviços de Saúde , Gerenciamento de Resíduos , Eliminação de Resíduos de Serviços de Saúde/métodos , Saúde Pública , Etiópia , Estudos Transversais , Resíduos de Serviços de Saúde/análise , Substâncias Perigosas , Resíduos Perigosos/análise , Atenção à Saúde
2.
J Environ Manage ; 354: 120464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401504

RESUMO

Brick kiln co-treatment is a novel industrial hazardous wastes (IHWs) utilization process. However, the effects of chlorine (Cl) in wastes on heavy metals (HMs) during this process are overlooked. This study investigated the stabilization/solidification (S/S) and volatilization, as well as long and short-term leaching, of HMs in Cl-containing bricks. The results indicated enhanced formations of stable mineral phases (NiFe2O4, Ni2SiO4, Cd3Al2Si3O12, CdSiO3, FeCr2O4, Cr2O3, CuFe2O4, and CuAl2O4) in bricks at a low sintering temperature (800 °C) due to the affinity between Cl and HMs. By comparing HM concentrations before and after sintering in bricks, the study observed that Cl's presence significantly elevated the volatilization rates for Cd and Cu by 30.8% and 14.2%, respectively. In contrast, the effect on volatilization for Ni and Cr was not significant. Additionally, utilizing the NEN 7375 method, the cumulative leaching rates of Ni, Cd, Cr, and Cu over a 64-day experiment under extremely acidic conditions were 0.22%, 7.18%, 0.01%, and 1.46%, respectively. Similarly, higher short-term leaching rates of Cd (4.03%) and Cu (5.73%) than those of Ni (0.94%) and Cr (0.08%) were observed. This finding might be attributed to the lower stability of the Cd and Cu solid phases under acidic environments compared to those of Ni and Cr. Surface wash-off, dissolution, and diffusion were the processes governing HM leaching from bricks. The 10-year projections revealed a minimal release of HMs during future extended leaching, implying the successful S/S of HMs. This study provides a reference for assessing the environmental impacts of brick kiln co-processing of Cl-containing IHWs.


Assuntos
Cloro , Metais Pesados , Cádmio , Resíduos Perigosos/análise , Metais Pesados/análise
3.
Environ Sci Pollut Res Int ; 31(13): 20048-20072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372924

RESUMO

While several research studies considered the utilization of reclaimed asphalt pavement (RAP) aggregates for asphalt and concrete pavements, very few attempted its possible utilization for precast concrete applications like concrete paver blocks (CPBs). Moreover, few attempts made in the recent past to improve the strength properties of RAP inclusive concrete mixes by incorporating certain supplementary cementitious materials (SCMs) have reported an insignificant or marginal effect. The present study attempts to comprehensively investigate the utilization potential of some locally and abundantly available materials having suitable physicochemical properties to improve the performance of a zero-slump CPB mix containing 50% RAP aggregates. The studied filler materials, namely, wollastonite (naturally occurring calcium metasilicate mineral) and jarosite (hazardous zinc industry waste), were used to replace 5-15% and 10-20% by volume of Portland cement in the 50% RAP CPB mix. Apart from their individual effects, the efficacy of wollastonite-jarosite blends was also investigated. Considering the lack of indoor storage facilities and economic aspects of CPBs, the influence of water spray curing regime on the performance of the RAP CPB mixes was studied and compared to that of continuous water curing regime. Inclusion of the considered fillers was found to statistically and significantly enhance the flexural strength, tensile splitting strength, and abrasion resistance of the 50% RAP CPB mix; however, the compressive strength (in most cases), permeable voids, water absorption, and water permeability properties showed an insignificant improvement. Results of thermogravimetric analysis confirmed the occurrence of pozzolanic reactivity, and microstructure analysis revealed improvements in packing of concrete matrix and ITZ with filler inclusion qualitatively substantiating the improvements in strength and durability characteristics. The toxicity characteristics of heavy metals that may leach from the hazardous jarosite-based RAP CPB mixes were found to be within permissible limits. Based on the performance requirements specified by IS, IRC, and ASTM standards, all the RAP CPB mixes with filler inclusions fulfilled the acceptance criteria for heavy traffic applications, and water spray curing can enact as an alternate method for curing these mixes. However, to avail maximum performance benefits, it is recommended to use 5% wollastonite, 15% jarosite, and a combination of 10% wollastonite and 10% jarosite as a Portland cement substitute to produce sustainable eco-friendly RAP CPB mixes.


Assuntos
Compostos de Cálcio , Poeira , Compostos Férricos , Hidrocarbonetos , Silicatos , Sulfatos , Desenvolvimento Sustentável , Excipientes , Resíduos Perigosos , Água
4.
J Environ Manage ; 353: 120148, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306856

RESUMO

Arsenic-bearing neutralization (ABN) sludge is a classical hazardous waste commonly found in nonferrous metallurgy. However, the current storage of these hazardous wastes not only has to pay costly hazardous waste taxes but also poses significant risks to both the environment and human health. To address these issues and achieve the comprehensive utilization and minimization of ABN sludge, this study proposes a new combined process. The process involves selective reduction roasting, leaching, and carbonation, through which, the arsenate and gypsum in the ABN sludge were recovered in the form of As(s), high-purity CaCO3, and H2S. The selective reduction behaviors of arsenate and gypsum were investigated through thermodynamic analysis and roasting experiments. The results indicated that the 95.35 % arsenate and 96.55 % gypsum in the sludge were selectively reduced to As4(g) and CaS at 950 °C by carbothermic reduction. The As4(g) was condensed to As(s) and enriched in the dust (As, 96.78 wt %). In the leaching process, H2S gas was adopted to promote the leaching of CaS, and resulted in 97.41 % of CaS in the roasted product was selectively leached in the form of Ca(HS)2, leading to a 74.11 % reduction in the weight of the ABN sludge. Then, the Ca(HS)2 was subjected to capture CO2 for the separation of Ca2+ and S2-. The result depicted that 99.69 % of Ca2+ and 99.12 % of S2- were separated as high-purity (99.12 wt %) CaCO3 and H2S (24.89 vol %) by controlling the terminal carbonation pH to below 6.55. The generated H2S can be economically converted to sulfur by the Clause process. The whole process realized the comprehensive resource recovery and the minimization of the sludge, which provides an alternative solution for the clean treatment of hazardous ABN waste.


Assuntos
Arsênio , Humanos , Arsênio/análise , Esgotos , Arseniatos , Sulfato de Cálcio , Resíduos Perigosos
5.
J Environ Manage ; 354: 120366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364544

RESUMO

In recent years, illegal dumping of hazardous waste (IDHW) in China has become a recurring problem. Effective identification and exploration of the factors influencing illegal dumping are crucial for incident prevention and hazardous waste management, but its analysis has rarely been reported. Thus, this study focused on 568 cases of IDHW officially reported by the government. Through regular expressions, the categories of dumped wastes and the provinces where the incidents occurred were extracted. Furthermore, a comprehensive set of influencing factors was constructed by text mining for the case content and by the integration from the existing literature. On this basis, the unstructured and structured data were integrated using a Boolean dataset to respectively explore the association rules of influencing factors for the overall IDHW and for major waste categories, in conjunction with the extracted province information. Subsequently, a Bayesian network was constructed by utilizing the results of association rules mining and the key factors were identified through corresponding analysis. The findings of this study reveal a close connection between various influencing factors, with distinct key factors identified for different categories of hazardous waste. Among them, law-enforcement emerges as a crucial factor in most IDHW cases, while the factor of public monitoring for metallic hazardous waste and the factor of government supervision for distillation residue waste and other waste play a key role in their respective cases of illegal dumping. These findings offer a fresh research perspective for investigating the factors influencing IDHW and present helpful insights for developing effective strategies to prevent and control such incidents.


Assuntos
Resíduos Perigosos , Gerenciamento de Resíduos , Teorema de Bayes , China , Gerenciamento de Resíduos/métodos
6.
Environ Sci Pollut Res Int ; 31(5): 7712-7727, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38170352

RESUMO

The multi-source hazardous waste co-disposal system, a recent innovation in the industry, offers an efficient approach for hazardous waste disposal. The incineration fly ash (HFA) produced by this system exhibits characteristics distinct from those of typical incineration fly ash, necessitating the use of adjusted disposal methods. This study examined the physicochemical properties, heavy metal content, heavy metal leaching concentration, and dioxin content of HFA generated by the new co-disposal system and compared them with those of conventional municipal waste incineration fly ash. This study investigated the solidification and stabilization of HFA disposal using the organic agent sodium diethyl dithiocarbamate combined with cement on a field scale. The findings revealed significant differences in the structure, composition, and dioxin content of HFA and FA; HFA contained substantially lower levels of dioxins than FA did. Concerning the heavy metal content and leaching; HFA exhibited an unusually high concentration of zinc, surpassing the permitted emission limits, making zinc content a critical consideration in HFA disposal. After stabilization and disposal, the heavy metal leaching and dioxin content of HFA can meet landfill disposal emission standards when a 1% concentration of 10% sodium diethyldithiocarbamate (DDTC) and 150% silicate cement were employed. These results offer valuable insights into the disposal of fly ash resulting from incineration of mixed hazardous waste.


Assuntos
Dioxinas , Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/química , Eliminação de Resíduos/métodos , Material Particulado , Resíduos Sólidos/análise , Resíduos Perigosos , Carbono , Incineração , Metais Pesados/análise , Zinco , Ditiocarb
7.
Chemosphere ; 350: 141123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185426

RESUMO

Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Ecossistema , Resíduos Perigosos
8.
Waste Manag Res ; 42(2): 95-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37313954

RESUMO

Ayurveda hospitals generate biomedical wastes (BMW). However, details on composition, quantities and characteristics are very scarce, details which are important to formulate a proper waste management plan for subsequent implementation and continual improvement. Therefore, this article presents a mini review of the composition, quantities and characteristics of BMW generated from Ayurveda hospitals. Additionally, this article presents some best possible treatment and disposal procedures. Most of the information was gleaned from peer-reviewed journals, although some information was collected by the author and from grey literature available to the author; 70-99% (by wet weight) of the solid waste is non-hazardous; biodegradables contributing to 44-60% by wet weight due to more used Kizhi (medicinal bags for fomentation) and other medicinal/pharmaceutical wastes (excluding waste medicated oils, which is 12-15% of the liquid medicinal waste stream and are not readily biodegradable) largely derived from plants. The hazardous waste component includes infectious wastes, sharps, blood as pathological wastes (from Raktamoksha - bloodletting), heavy metal containing pharmaceutical wastes, chemical wastes and heavy metal rich wastes. Quantities of infectious wastes followed by sharps and blood form a major portion of hazardous wastes. Most of the infectious waste material contaminated with blood or other body fluids and sharps from Raktamoksha are very similar (appearance, moisture content and bulk density) to what is generated from hospitals practicing Western medicine. However, hospital-specific waste studies are required in future to better understand the sources, areas of generation, types, quantities and characteristics of BMW, and hence to formulate more accurate waste management plans.


Assuntos
Eliminação de Resíduos de Serviços de Saúde , Metais Pesados , Eliminação de Resíduos de Serviços de Saúde/métodos , Hospitais , Resíduos Perigosos , Ásia Meridional , Resíduos Sólidos , Preparações Farmacêuticas
9.
J Environ Manage ; 351: 119730, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086123

RESUMO

In this study, the behavior of heavy metal transformation during the co-thermal treatment of hazardous waste incineration fly ash (HWIFA) and Fe-containing hazardous waste (including hazardous waste incineration bottom slag (HWIBS) and electroplating sludge (ES)) was investigated. The findings demonstrated that such a treatment effectively reduced the static leaching toxicity of Cr and Pb. Moreover, when the treatment temperature exceeded 1000 °C, the co-thermal treated sample exhibited low concentrations of dynamically leached Cr, Pb, and Zn, indicating that these heavy metals were successful detoxified. Thermodynamic analyses and phase transformation results suggested that the formation of spinel and the gradual disappearance of chromium dioxide in the presence of Fe-containing hazardous wastes contributed to the solidification of chromium. Additionally, the efficient detoxification of Pb and Zn was attributed to their volatilization and entry into the liquid phase during the co-thermal treatment process. Therefore, this study sets an excellent example of the co-thermal treatment of hazardous wastes and the control of heavy metal pollution during the treatment process.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Eliminação de Resíduos/métodos , Esgotos/análise , Resíduos Perigosos/análise , Galvanoplastia , Chumbo , Incineração/métodos , Metais Pesados/análise , Resíduos Sólidos/análise , Carbono , Material Particulado/análise
10.
Waste Manag ; 174: 575-584, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142563

RESUMO

Hazardous waste rotary kiln incineration, as the most effective and comprehensive technology to reduce and detoxify waste, generally faces problems such as low load rate and short continuous operating periods. However, there are few studies on the actual operation of such facilities and evaluation of their technical efficiency. Based on the 77-week time-series data of the case company, this study introduces in-depth key operating parameters and evaluates long-term technical efficiency through the data envelopment analysis (DEA) method. The results show that the continuous operating period of the rotary kiln incineration facility can reach more than half a year, with an average load rate of 91.7%. In the analysis of 9 input indicators, the amount of injected activated carbon could not be effectively evaluated due to the lack of relevant standards and online real-time monitoring of dioxins, which might become a weak link in the control of flue gas pollution. The average comprehensive technical efficiency of rotary kiln incineration facilities was 0.939, of which the average pure technical efficiency was 0.949 while the average scale efficiency was 0.989. With 33 of the 77 decision-making units being invalid, there is scope for improvement. The amount of incineration could be increased by 5.34%, and among the input variables, dosage of urea, calcium hydroxide and lye with a relatively high improvement ratio. Based on the results, targeted suggestions were proposed to advance the scientific and precise compatibility of hazardous waste, strengthen the control of dioxin emissions, and promote the intelligent control of the entire process.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Resíduos Perigosos/análise , Incineração/métodos , Poluição Ambiental
11.
Environ Sci Pollut Res Int ; 31(5): 7396-7407, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159187

RESUMO

Amid China's rapid economic expansion, the country's industrial solid waste (ISW) problem is escalating. As each sector generates distinct types of ISW, a multi-indicator assessment of each sector is essential to address China's New Solid Waste Policy. To investigate the ISW situation of each sector and perform a comprehensive assessment, we formulate an industrial solid waste ecological analysis framework based on ISW generation and ISW flow in the sector. Various indicators (i.e., solid waste utilization coefficient, solid waste threat coefficient, and solid waste threat intensity) are employed to assess the utilization of solid waste generated for each sector, as well as the threat of solid waste originating in each sector to society. Ecological network analysis probes the interrelationships between diverse sectors. Taking Shanghai in 2017 as an example, the study indicates that some sectors (e.g., production and supply of electric power and heat power (EH) and metal smelting and rolling processing sector (MS)) exhibit higher direct ISW generation and the direct industrial solid waste value-added coefficient (SVAC) for common industrial solid waste (CISW). Specifically, the direct CISW generation of EH and MS is 539.21Mt and 277.00Mt respectively. The direct SVAC of EH and MS is 157.06kg/103RMB and 126.27kg/103RMB respectively. These sectors should prioritize reducing emissions at the source. Additionally, the threats to society from various sectors are relatively insignificant for the CISW, while for the hazardous waste (HW), all sectors pose a considerable threat to Shanghai's society. Moreover, some sectors (e.g., mining industry) exhibit the highest mutualism relationships in the CISW and the HW. Enhancing mining sector technologies is a vital strategy for mitigating ISW sources. Specifically, MI has 9 pairs of mutualism relationships in the CISW and 8 pairs in the HW. These insights will provide empirical evidence for tackling the ISW problem in Shanghai.


Assuntos
Resíduos Industriais , Resíduos Sólidos , Resíduos Sólidos/análise , China , Indústrias , Mineração , Resíduos Perigosos , Dióxido de Carbono/análise , Desenvolvimento Econômico
12.
J Environ Manage ; 350: 119567, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007927

RESUMO

Dealing with the current defaults of environmental toxicity, heating, waste management, and economic crises, exploration of novel non-edible, toxic, and waste feedstock for renewable biodiesel synthesis is the need of the hour. The present study is concerned with Buxus papillosa with seeds oil concentration (45% w/w), a promising biodiesel feedstock encountering environmental defaults and waste management; in addition, this research performed simulation based-response surface methodology (RSM) for Buxus papillosa bio-diesel. Synthesis and application of novel Phyto-nanocatalyst bimetallic oxide with Buxus papillosa fruit capsule aqueous extract was advantageous during transesterification. Characterization of sodium/potassium oxide Phyto-nanocatalyst confirmed 23.5 nm nano-size and enhanced catalytic activity. Other characterizing tools are FTIR, DRS, XRD, Zeta potential, SEM, and EDX. Methyl ester formation was authenticated by FTIR, GC-MS, and NMR. A maximum 97% yield was obtained at optimized conditions i.e., methanol ratio to oil (8:1), catalyst amount (0.37 wt%), reaction duration (180 min), and temperature of 80 °C. The reusability of novel sodium/potassium oxide was checked for six reactions. Buxus papillosa fuel properties were within the international restrictions of fuel. The sulphur content of 0.00090% signified the environmental remedial nature of Buxus papillosa methyl esters and it is a highly recommendable species for biodiesel production at large scale due to a t huge number of seeds production and vast distribution.


Assuntos
Buxus , Gerenciamento de Resíduos , Resíduos Perigosos , Biocombustíveis/análise , Ésteres , Catálise , Sódio , Óleos de Plantas
13.
Environ Monit Assess ; 195(11): 1380, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889377

RESUMO

Attention given to environmental pollution caused by environmental analytical (EA) laboratories is very poor in Sri Lanka (an economically developing country). This article discusses EA laboratory effluents and hazardous solid wastes, current environmental management practices, and the legislative requirements in Sri Lanka. Effluent quantities generated are low (29.99-63.09 L/week), but characterized with variable pH, high chemical oxygen demand (COD), total suspended solids (TSS) and heavy metals, and very high ecotoxicity. Quantities of chemical-contaminated solid wastes is 80-100 kg/year (excluding outdated and rejected chemicals). Most laboratories dispose chemical-contaminated solid wastes mixed with non-hazardous recyclables using the services of local authorities and some laboratories (particularly in areas where there is no municipal solid waste collection), practice backyard dumping or open burning, while a few laboratories employ private parties to dispose or burn these wastes elsewhere. Only one laboratory is disposing chemical-contaminated solid wastes through co-processing. Appropriate waste management strategies (including some cleaner production concepts) are discussed in this paper for selected streams of hazardous wastes.


Assuntos
Resíduos Perigosos , Eliminação de Resíduos , Laboratórios , Resíduos Sólidos , Países em Desenvolvimento , Sri Lanka , Monitoramento Ambiental , Análise da Demanda Biológica de Oxigênio
14.
Chemosphere ; 345: 140449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839747

RESUMO

In a recent estimate, 96 million tons of hazardous waste were produced in the European Union, most of which were handled among the member states. Organophosphate esters (OPEs) are applied as flame retardants and plasticizers and are present in many products, e.g., electronics, which end up in the hazardous waste stream upon disposal. Given the growing body of information suggesting potential adverse health effects of OPEs, waste recycling workers who handle hazardous waste could potentially be at risk of elevated exposure to these chemicals. Using silicone wristbands, we evaluated OPE exposure among waste recycling workers who handled hazardous waste and compared their exposure to that of administrative workers from the same waste companies. Wristbands were extracted and analyzed for six OPEs, which were all detected in >75% of wristbands. Overall, the sum of tris(2-chloroisopropyl) phosphate (∑TCIPP) isomers was the most abundant OPE across all wristbands collected within the study. In general, the sum of tri(methyl phenyl) phosphate isomers (∑TMPP) was elevated for all waste workers (10ß = 7.9), whereas tri-n-butyl phosphate (TnBP), tris(1,3-dichloroisopropyl) phosphate (TDCIPP), and ∑TMPP were 3-12 times higher among those specifically handling electronic and hazardous waste compared to the administrative workers (p < 0.05). Repeated wristband measurements from the same worker had fair to good consistency in OPE concentrations (intraclass correlation coefficients = 0.54-0.77), except for the two most volatile chlorinated OPEs. Taken together, our results suggest that waste recycling workers who handle electronic and hazardous waste have significantly elevated exposure to OPEs, and efforts to reduce these exposures should be considered.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Retardadores de Chama , Humanos , Silicones , Organofosfatos , Fosfatos , Retardadores de Chama/análise , Resíduos Perigosos , Ésteres , Dinamarca , Monitoramento Ambiental
15.
Environ Sci Pollut Res Int ; 30(48): 105030-105055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37725301

RESUMO

Globally, industrialisation and urbanisation have led to the generation of hazardous waste (HW). Sustainable hazardous waste management (HWM) is the need of the hour for a safe, clean, and eco-friendly environment and public health. The prominent waste management strategies should be aligned with circular economic models considering the economy, environment, and efficiency. This review critically discusses HW generation and sustainable management with the strategies of prevention, reduction, recycling, waste-to-energy, advanced treatment technology, and proper disposal. In this regard, the major HW policies, legislations, and international conventions related to HWM are summarised. The global generation and composition of hazardous industrial, household, and e-waste are analysed, along with their environmental and health impacts. The paper critically discusses recently adapted management strategies, waste-to-energy conversion techniques, treatment technologies, and their suitability, advantages, and limitations. A roadmap for future research focused on the components of the circular economy model is proposed, and the waste management challenges are discussed. This review stems to give a holistic and broader picture of global waste generation (from many sources), its effects on public health and the environment, and the need for a sustainable HWM approach towards the circular economy. The in-depth analysis presented in this work will help build cost-effective and eco-sustainable HWM projects.


Assuntos
Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Resíduos Perigosos , Saúde Pública , Políticas , Gestão da Segurança , Reciclagem , Resíduos Sólidos
16.
New Solut ; 33(2-3): 158-164, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37644813

RESUMO

In 2021, the Infrastructure Investment and Jobs Act, also known as the Bipartisan Infrastructure Law (BIL), became law, with one component being an investment to clean-up Superfund and Brownfield sites. Through BIL funding, the Environmental Protection Agency announced $3.5 billion to clean-up Superfund sites that have been awaiting funding for years in mostly historically underserved communities. As in many states, the 3 Superfund sites used as examples in this essay are in a metropolitan or surrounding area and in residential communities. The photos in this essay help highlight how hazardous waste sites have come to look like normal industrial sites and that communities are often unaware of the dangerous exposures they face. The author suggests that in the age of social media, taking pictures and documentation of hazardous waste sites today in our communities can help mobilize public awareness and drive action to be taken toward delayed clean-up.


Assuntos
Substâncias Perigosas , Resíduos Perigosos , Estados Unidos , Humanos , New Jersey , Resíduos Perigosos/prevenção & controle , United States Environmental Protection Agency
17.
Chemosphere ; 340: 139840, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597624

RESUMO

The solar photovoltaic (PV) industry has experienced rapid growth in recent years, resulting in a substantial increase in the amount of end-of-life (EOL) waste generated by these panels. Proper waste management is crucial to minimize environmental and health risks. The purpose of this study is to examine the EOL solar PV waste management policies and regulations in China and the United States, identifying challenges and recommending policy implications for enhancing sustainable waste management practices. China has promulgated policies and regulations for managing PV EOL waste, including the National Solid Waste Law and GB or GB/T standards. In the US, federal regulations and guidelines such as the Resource Conservation and Recovery Act (RCRA) and state-specific hazardous waste programs, universal waste rules, and waste recycling programs are enacted. The findings of this study indicate that China and the US face distinct challenges in solar PV end-of-life waste management. China lacks comprehensive local government-level regulations, while the USA exhibits variations in coverage and specific management requirements across states. In light of these observations, as policy implications, it is recommended. Firstly, there is a need for greater harmonization between federal and local/state-level policies and regulations. Secondly, continued research and development efforts are crucial to explore cost-effective and environmentally responsible recycling and disposal options for PV panels. Furthermore, promoting collaboration among policymakers, industry stakeholders, and researchers can facilitate knowledge sharing and the exchange of best practices. Such measures will contribute to the effective and sustainable management of solar PV EOL waste in China and the USA.


Assuntos
Morte , Regulamentação Governamental , Humanos , China , Resíduos Perigosos , Políticas
18.
J Environ Manage ; 344: 118470, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399626

RESUMO

Sustainable valorization of tannery sludge (TS) is vital for achieving several sustainable development goals (SDGs) in the tannery industry. TS is considered a hazardous waste by-product posing a significant environmental challenge. However, TS can be utilized for energy or resource recovery by considering it as biomass and implementing the circular economy (CE) concept. Therefore, this study aims to develop an innovative DPSIR (Driver, Pressure, State, Impact, and Response) framework for promoting sustainable valorization of TS. Further, the study extends to quantify the importance of subjective DPSIR factors by offering interval-valued intuitionistic fuzzy number-based best worst method (IVIFN-BWM), which is relatively new in the literature and able to deal with the uncertainty, inconsistency, imprecise, and vagueness in the decision-making process. The study also investigates the most appropriate TS valorization technologies concerning identified DPSIR factors using a novel IVIFN-combined compromise solution (CoCoSo) approach. This research contributes to the literature by developing a comprehensive solution approach that combines the DPSIR framework, IVIFN-BWM, and IVIFN-CoCoSo method in addressing sustainability and resource recovery challenges for the tannery industry. The research findings highlight the potential of sustainable valorization of TS in reducing the waste amount and promoting sustainability and CE practices in the tannery industry. The findings indicated that response factors 'creation of national-level policies and awareness campaign' and 'facilitating financial support to adopt waste valorization technologies' received the highest priority among other DPSIR factors for managing and fostering sustainable valorization of TS. The IVIFN-CoCoSo analysis confirmed that the most promising TS valorization technology is 'gasification', which is followed by pyrolysis, anaerobic digestion, and incineration. The study's implications extend to policymakers, industrial practitioners, and researchers, who can leverage the research findings to develop more sustainable TS management practices in the tannery industry.


Assuntos
Resíduos Perigosos , Esgotos , Incineração , Incerteza , Desenvolvimento Sustentável
19.
Ecotoxicol Environ Saf ; 263: 115249, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441948

RESUMO

Precisely predicting the amount of household hazardous waste (HHW) and classifying it intelligently is crucial for effective city management. Although data-driven models have the potential to address these problems, there have been few studies utilizing this approach for HHW prediction and classification due to the scarcity of available data. To address this, the current study employed the prophet model to forecast HHW quantities based on the Integration of Two Networks systems in Shanghai. HHW classification was performed using HVGGNet structures, which were based on VGG and transfer learning. To expedite the process of finding the optimal global learning rate, the method of cyclical learning rate was adopted, thus avoiding the need for repeated testing. Results showed that the average rate of HHW generation was 0.1 g/person/day, with the most significant waste categories being fluorescent lamps (30.6 %), paint barrels (26.1 %), medicine (26.2 %), battery (15.8 %), thermometer (0.03 %), and others (1.22 %). Recovering rare earth element (18.85 kg), Cd (3064.10 kg), Hg (15643.43 kg), Zn (14239.07 kg), Ag (11805.81 kg), Ni (4956.64 kg) and Li (1081.45 kg) from HHW can help avoid groundwater pollution, soil contamination and air pollution. HVGGNet-11 demonstrated 90.5 % precision and was deemed most suitable for HHW sorting. Furthermore, the prophet model predicted that HHW in Shanghai would increase from 794.43 t in 2020 to 2049.67 t in 2025.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Eliminação de Resíduos/métodos , Resíduos Perigosos/análise , Produtos Domésticos , China , Poluição Ambiental/análise , Gerenciamento de Resíduos/métodos
20.
J Environ Manage ; 345: 118669, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506443

RESUMO

Incineration technology has been widely adopted to safely dispose of hazardous waste (HW). While the incineration process causes the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Due to its extreme toxicity, many scholars have been committed to determining the PCDD/F formation process and reducing emissions in incinerators. Previous studies ignored the impact of incineration and fluctuation of feeding materials on PCDD/F formation in hazardous waste incinerators (HWIs). In this study, differences in PCDD/F formation between HWIs and municipal solid waste incinerators (MSWIs) were pointed out. The incineration section in HWIs should be carefully considered. Laboratory experiments, conventional analysis and thermogravimetry experiments were conducted. An obvious disparity of PCDD/F formation between 12 kinds of HWs was found. Distillation residue was found with remarkably higher PCDD/F concentrations (11.57 ng/g). Except for the Cl content, aromatic rings and C-O bond organics were also found with high correlation coefficients with PCDD/F concentrations (>0.92). And PCDD/Fs were formed through a chlorination process and structure formation process. All of these are helpful to further understand the PCDD/F formation process during HW incineration, optimize the operation conditions in HWIs and reduce the emission pressure of PCDD/Fs in the future.


Assuntos
Poluentes Atmosféricos , Dibenzodioxinas Policloradas , Dibenzofuranos/análise , Incineração , Dibenzodioxinas Policloradas/análise , Dibenzodioxinas Policloradas/química , Dibenzofuranos Policlorados/análise , Dibenzofuranos Policlorados/química , Resíduos Perigosos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Resíduos Sólidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...