Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Int. microbiol ; 22(3): 399-401, sept. 2019. graf, tab
Artigo em Inglês | IBECS | ID: ibc-184847

RESUMO

Research regarding zoonotic diseases often focuses on those diseases that are transferred from animals to humans. However, humans are also transmitting pathogens to animals but research on this topic is not given priority and importance. I have tried to draw the attention of researchers to this area also which is equally important. The aim of this letter was to provide a brief overview of published literature regarding reverse zoonoses or zooanthroponosis in the field of leishmaniasis and highlight the need for future work in this area. Scientific research must be conducted in the field of reverse zoonoses to provide an enriched understanding of emerging disease threats to animals and should not be neglected


No disponible


Assuntos
Humanos , Animais , Doenças dos Animais/epidemiologia , Transmissão de Doença Infecciosa , Leishmaniose/transmissão , Leishmaniose/veterinária , Vertebrados
2.
Allergol. immunopatol ; 45(3): 297-304, mayo-jun. 2017. graf, tab
Artigo em Inglês | IBECS | ID: ibc-162394

RESUMO

With the exception of tilapia tropomyosin, other anecdotic reports of tropomyosin recognition of vertebrate origin are generally not accompanied by clinical significance and a dogmatic idea is generally accepted about the inexistence of allergenicity of vertebrate tropomyosins, based mainly on sequence similarity evaluations with human tropomyosins. Recently, a specific work-up of a tropomyosin sensitised patient with seafood allergy, demonstrated that the IgE-recognition of tropomyosin from different fish species can be clinically relevant. We hypothesise that some vertebrate tropomyosins could be relevant allergens. The hypothesis is based on the molecular evolution of the proteins and it was tested by in silico methods. Fish, which are primitive vertebrates, could have tropomyosins similar to those of invertebrates. If the hypothesis is confirmed, tropomyosin should be included in different allergy diagnosis tools to improve the medical protocols and management of patients with digestive or cutaneous symptoms after fish intake (AU)


No disponible


Assuntos
Tropomiosina/imunologia , Tropomiosina/metabolismo , Imunoglobulina E/metabolismo , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Receptores de IgE/imunologia , Alérgenos/imunologia , Alérgenos/metabolismo , Peixes/imunologia , Vertebrados/imunologia , Invertebrados/imunologia
3.
Arch. Soc. Esp. Oftalmol ; 89(12): 484-494, dic. 2014. ilus
Artigo em Espanhol | IBECS | ID: ibc-135436

RESUMO

OBJETIVO: Estudiar las distintas formas que la pupila adquiere en las diferentes especies animales. MATERIAL Y MÉTODOS: Revisión de la literatura, utilizando PubMed. La estrategia inicial de búsqueda fue pupil shape (limitada a animals). También se revisaron 2 textos relacionados: System of Ophthalmology (Duke-Elder) y Evolution's witness (I. Schwab). RESULTADOS: En los ojos compuestos de los insectos es habitual observar una ilusión óptica que recibe el nombre de pseudopupila. La pupila tiene en la mayor parte de los vertebrados forma circular. Sin embargo en los gatos y en algunas especies de serpiente adopta forma vertical. La apertura vertical podría tener una función fotoprotectora al conseguir una reducción más efectiva de la entrada de luz en el ojo. Se ha especulado con que ayudaría a corregir la aberración cromática, y probablemente ayuda a camuflar al animal. En los rumiantes es habitual la pupila en hendidura horizontal. Esta forma podría potenciar la capacidad del sistema visual para detectar siluetas verticales. En el medio marino es frecuente que la pupila adopte forma de creciente, debido a la presencia de un opérculo superior que protegería la retina del exceso de luz procedente de la superficie. CONCLUSIÓN: La forma de la pupila ofrece una sorprendente variabilidad gracias a la cual la naturaleza ha adaptado el ojo a diversas circunstancias. Las teorías propuestas para justificar esta gran variabilidad se discuten de forma detallada en el artículo


OBJECTIVE: To study the different pupil shapes adopted by the different animal species. MATERIAL AND METHODS: Review of the related literature, using PubMed database. The initial search strategy was pupil shape (limited to animals). The first volume of System of Ophthalmology (Duke-Elder) and Evolution's witness (I. Schwab) were also reviewed. RESULTS: An optic illusion called pseudopupil is usually observed in the compound eyes of insects. The pupil is circular in most vertebrates, however slit vertical pupils are present in cats and in some snake species. Vertical pupils could have a photoprotective function, as it makes a more complete closure possible in photopic conditions, and helps to camouflage the predator. It has also been hypothesized that it could help to correct chromatic aberration. Ruminants are usually endowed with horizontal pupils. This shape could improve the capacity of the eye to detect vertical silhouettes. Some marine animals have crescent-shaped pupils. In these animals, a superior operculum helps to protect the inferior retina from the great amount of light coming from above. CONCLUSION: There is a surprising variability in pupil shape. Through this variability, nature has fitted the eye to different circumstances. The theories proposed to explain this high variability are discussed in detail in the article


Assuntos
Animais , Iris/anatomia & histologia , Pupila , Olho Composto de Artrópodes/anatomia & histologia , Invertebrados/anatomia & histologia , Especificidade da Espécie , Vertebrados/anatomia & histologia
4.
Eur. j. anat ; 18(4): 245-252, oct. 2014. ilus
Artigo em Inglês | IBECS | ID: ibc-131302

RESUMO

The vertebrate brain is a remarkably complex anatomical structure which contains diverse subdivisions and neuronal subtypes with specific synaptic connections that contribute to the complexity of its function. The neural tube (the primordial brain) has to be progressively regionalized by means of precise control of the spatial and temporal arrangement of an orchestrated cocktail of genes. These will regulate inter- and intracellular signals driving a proper molecular patterning and specification of the distinct brain subdivisions, and thus will generate the structural basis of complexity and cellular diversity which characterize the brain. The present revision focuses on the main molecules involved during early development of the vertebrate cerebellum, the most rostral and dorsal structure of the hindbrain. We will survey the literature related to the early molecular mechanisms arising from the isthmus to pattern the caudal midbrain and rostral hindbrain primordia. The isthmus retains morphogenetic properties to further refining these subdivisions. Once the patterning of the cerebellar anlage is established, further molecular events (coming from the ventricular side and the rhombic lip) will specify the diverse neural cell population and the fine-tuning of the stereotyped morphology and layers of the cerebellum. Finally, we will discuss the combination of molecular genetics (gene expression pattern maps) and modern neuroanatomy (based on immunohistochemistry and highly sensitive neuroimaging), which have led to an increased interest in describing the neurodevelopment mechanisms underlying structural disorders and intellectual discapacities that we currently observe in congenital anomalies of the human cerebellum


No disponible


Assuntos
Humanos , Cerebelo/anatomia & histologia , Vertebrados/anatomia & histologia , Região Organizadora do Nucléolo , Mesencéfalo/anatomia & histologia , Rombencéfalo/anatomia & histologia , Cerebelo/anormalidades
5.
An. R. Acad. Farm ; 80(2): 347-361, abr.-jun. 2014. ilus, graf, tab
Artigo em Inglês | IBECS | ID: ibc-125902

RESUMO

Hormones are expressed during development in unexpected locations and stages, and this fact relates to their distinct functional roles in the embryo. In recent work, we found that the expression of Tyrosine Hydroxylase (TH, first enzyme of the catecholamine synthetic pathway) and the presence of catecholamines, antecede neural innervation in some tissues. We focus this overview on the vertebrate developing heart. TH transcripts were present in early cardiogenesis, and adrenergic as well as dopaminergic receptors were found in the cardiac region of chick embryos. We found direct effects of dopamine on cardiac gene expression and we have advanced in revealing the function of catecholamines on cardiac patterning


Las hormonas están expresadas durante el desarrollo en etapas y localizaciones inesperadas y este hecho se relaciona con sus distintas funciones en el embrión. Recientemente, hemos encontrado que la expresión de la Tirosina Hidroxilasa (TH, el primer enzima de la ruta de síntesis de catecolaminas) y la presencia de catecolaminas, anteceden a la inervación neural en algunos tejidos. Este artículo está centrado en el desarrollo del corazón de vertebrados. Los transcritos de TH se expresan durante la cardiogénesis temprana y se encontraron receptores dopaminérgicos y adrenérgicos en la región cardiaca del embrión de pollo. Hemos demostrado efectos directos de la dopamina sobre la expresión de genes cardiacos y hemos avanzado en caracterizar una función de las catecolaminas sobre la formación del patrón del corazón


Assuntos
Animais , Catecolaminas/farmacocinética , Coração/crescimento & desenvolvimento , Dopamina/farmacocinética , Tirosina 3-Mono-Oxigenase/análise , Vertebrados/crescimento & desenvolvimento , Hormônios/farmacocinética , Neurotransmissores/farmacocinética , Elementos Reguladores de Transcrição
6.
Span. j. psychol ; 13(1): 18-29, mayo 2010. ilus
Artigo em Inglês | IBECS | ID: ibc-79627

RESUMO

Intracellular recording in the retina of the snail, Helix pomatia L., reveals the existence of two types of cell responsive to diffuse flashes of achromatic or monochromatic light: B-type cells, which respond with sustained depolarization that is sometimes accompanied by spikes, and D-type cells, which respond with sustained hyperpolarization. The peak of spectral sensitivity for both B- and D-cells falls in the 450-500 nm range and coincides with range of maximal sensitivity for the rhodopsin family of photopigments. Within a proposed two-channel model of snail achromatic vision, responses of the B- and D-cells are represented by a two-dimensional ‘excitation vector’. The length of the ‘excitation vector’ is approximately constant, and its direction correlates with light intensity. The vector model of light encoding in the snail is discussed in relation to models of achromatic vision in vertebrates (fish, frog, monkey, and humans) based on psychophysical, behavioral and neurophysiological data. Intracellular data in the snail taken together with data from vertebrate animals support the hypothesis that a 2-dimensional model of brightness and darkness encoding utilizes a universal mechanism of ‘vector encoding’ for light intensity in neuronal vision networks (AU)


El registro intracelular en la retina del caracol, Heliz pomatia, L., muestra la existencia de dos tipos de células que reaccionan a destellos difusos de luz acromática o monocromática: las células tipo B responden con una depolarización constante con picos de actividad ocasionales; y las células tipo D responden con una hiperpolarización constante. El pico de sensibilidad espectral de las células B y C se centra en un rango de entre 450-500 nm y coincide con los rangos de máxima sensibilidad de las rodopsinas, de la familia de los fotopigmentos. Desde el modelo de dos-canales de visión acromática del caracol, las respuestas a las células B y D están representadas por un vector de excitación de dos-canales. La extensión de este vector de excitación es más o menos constante, y su dirección correlaciona con la intensidad de la luz. El procesamiento de la luz de los caracoles se discute en términos del modelo del vector en relación con modelos de visión acromática en vertebrados (peces, ranas, monos, y humanos) basados en datos psicofisiológicos, conductuales y neurofisiológicos. Tomados en conjunto, los datos intracelulares del caracol y los de animales vertebrados se sostiene la hipótesis de que el modelo de 2-dimensiones para el procesamiento del brillo y la oscuridad se basa en un mecanismo universal de codificación vectorial para la intensidad de la luz en las redes neuronales de visión (AU)


Assuntos
Animais , Defeitos da Visão Cromática/fisiopatologia , Neurônios Aferentes/fisiologia , Vertebrados/fisiologia , Invertebrados/fisiologia , Visão Ocular/fisiologia , Moluscos/fisiologia , Escuridão , Luz
7.
Vigilia sueño ; 21(2): 59-75, jul.-dic. 2009. ilus
Artigo em Espanhol | IBECS | ID: ibc-108559

RESUMO

La evolución de los vertebrados debe haber favorecido las adaptaciones para soportar períodos de acceso limitado al oxígeno. Un ejemplo paradigmático de estas adaptaciones son los animales buceadores, quienes pueden soportar períodos de anoxia prolongados y repetidos. El medio interno de estos animales resiste lo que debería ser considerado un severo desajuste gaseoso. Estos animales disponen de tres estrategias principales: mantienen elevadas reservas de oxígeno, son capaces de resistir la asfixia y tienen la capacidad de reducir notablemente su metabolismo durante los períodos de apnea. Estas repuestas han aparecido por evolución a partir de respuestas para la supervivencia muy antiguas y que deben haber sido utilizadas en muchas otras ocasiones. Por su parte, las apneas de sueño probablemente comparten muchas adaptaciones fisiológicas con los animales buceadores. Esta revisión analiza la extensión de estas similitudes, ofrece evidencias de su existencia y sugiere posibles líneas de investigación que pueden mejorar el conocimiento clínico de las apneas de sueño (AU)


The evolution of vertebrates should have favoured adaptations to periodic limitations in the availability of oxygen. A paradigmatic example could be observed in diving animals that can support prolonged and repeated periods of anoxia, leading to severe gaseous unbalances in the internal medium. Animals developed three main mechanisms to achieve such goal: maintaining high oxygen stores, supporting asphyxia and reducing the energetic metabolism during apneic periods. These capacities should have been developed from very old evolutionary survival responses which could have been useful in many different situations involving respiratory stress. Accordingly, sleep apneas should share many physiological adaptations with diving animals. This review shows evidence of such similarities, analyzes their extension and suggests further research lines to improve the clinical consequences of sleep apneas (AU)


Assuntos
Animais , Masculino , Feminino , Vertebrados/fisiologia , Adaptação Fisiológica/fisiologia , Mergulho/fisiologia , Hipóxia/veterinária , Asfixia/complicações , Asfixia/veterinária , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/veterinária , Apneia/fisiopatologia , Síndromes da Apneia do Sono/fisiopatologia
8.
Inmunología (1987) ; 22(3): 277-286, jul.-sept. 2003. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-145269

RESUMO

Fish, as the first vertebrate group appearing in evolution after adaptive radiation during the Devonic period, still represent the most successful and diverse group of vertebrates. This heterogeneous group of organisms occupy an apparent crossroads between the innate immune response and the appearance of the adaptive immune response. Importantly, immune organs homologues to those of the mammalian immune system are present in fish. However, their structural complexity is less, potentially limiting the capability to generate fully functional adaptive immune responses against pathogen invasion. The ability of fish to mount successful immune responses with apparently more robust innate responses than that observed in higher vertebrates is discussed (AU)


Considerados como la base evolutiva vertebrada tras su radiación adaptativa en el Devónico, los peces constituyen en la actualidad el grupo más exitoso y diversificado de vertebrados. Como grupo, este conjunto heterogéneo de organismos representa una aparente encrucijada entre la respuesta inmunitaria innata y la aparición de una respuesta inmunitaria adaptativa. La mayoría de órganos inmunitarios de los mamíferos tienen sus homólogos en los peces. Sin embargo, su eventual menor complejidad estructural podría potencialmente limitar la capacidad para generar una respuesta inmunitaria completamente funcional frente a la invasión de patógenos. Se discute aquí la capacidad de los peces para generar respuestas inmunitarias exitosas, teniendo en cuenta la robustez aparente de la respuesta innata de los peces, en comparación con la observada en vertebrados superiores (AU)


Assuntos
Animais , Peixes/imunologia , Sistema Imunitário/fisiologia , Imunidade Adaptativa/fisiologia , Imunidade Inata/fisiologia , Vertebrados/imunologia , Formação de Anticorpos/imunologia , Citocinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA