Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161.745
Filtrar
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(5): 654-660, 2020 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-32897219

RESUMO

OBJECTIVE: To investigate the effect of ß-arrestin1 overexpression on tumor progression in a NCG mouse model bearing T-cell acute lymphocytic leukemia (T-ALL) Molt-4 cell xenograft. METHODS: Molt-4 cells were tagged with firefly-luciferase (F-Luc) by lentiviral infection, and fluorescence intensity of the cells was detected using a luminescence detector. Molt-4 cell lines with ß-arrestin1 overexpression or knockdown were constructed by lentivirus infection and injected via the tail vein in sub-lethal irradiated NCG mice. Body weight changes and survival time of the xenografted mice were observed, and the progression of T-ALL in the mice was evaluated using an in vivo fluorescence imaging system. Sixteen days after xenografting, the mice were euthanatized and tumor cell infiltration was observed in the slices of the liver and spleen. RESULTS: We successfully tagged Molt-4 cells with F-Luc and overexpressed or knocked down ß-arrestin1 in the tagged cells. Bioluminescent imaging showed obvious luminescence catalyzed by F-Luc in Molt-4 cells. After injection of Molt-4-Luc cells into irradiated NCG mice, a gradual enhancement of luminescence in the xenografted mice was observed over time, while the body weight of the mice decreased. Compared with the control mice, the mice xenografted with ß-arrestin1-overexpressing Molt-4 cells had significantly prolonged survival time (P < 0.001), while the survival time of the mice xenografted with Molt-4 cells with ß- arrestin1 knockdown was significantly shortened (P < 0.001). Histological examination revealed fewer infiltrating tumor cells in the liver and spleen of the mice xenografted with ß-arrestin1-overexpressing Molt-4 cells in comparison with the mice bearing parental Molt-4 cell xenografts. CONCLUSIONS: ß-arrestin1 overexpression suppresses tumor progression in mice bearing Molt-4 cell xenograft.


Assuntos
Linfócitos T , Animais , Progressão da Doença , Xenoenxertos , Humanos , Camundongos , Transplante Heterólogo , beta-Arrestina 1
2.
Lancet ; 396(10247): 345-360, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738956

RESUMO

Atopic dermatitis is a common inflammatory skin disorder characterised by recurrent eczematous lesions and intense itch. The disorder affects people of all ages and ethnicities, has a substantial psychosocial impact on patients and relatives, and is the leading cause of the global burden from skin disease. Atopic dermatitis is associated with increased risk of multiple comorbidities, including food allergy, asthma, allergic rhinitis, and mental health disorders. The pathophysiology is complex and involves a strong genetic predisposition, epidermal dysfunction, and T-cell driven inflammation. Although type-2 mechanisms are dominant, there is increasing evidence that the disorder involves multiple immune pathways. Currently, there is no cure, but increasing numbers of innovative and targeted therapies hold promise for achieving disease control, including in patients with recalcitrant disease. We summarise and discuss advances in our understanding of the disease and their implications for prevention, management, and future research.


Assuntos
Dermatite Atópica/epidemiologia , Dermatite Atópica/fisiopatologia , Inflamação/fisiopatologia , Linfócitos T/imunologia , Adolescente , Asma/epidemiologia , Criança , Pré-Escolar , Comorbidade , Dermatite Atópica/prevenção & controle , Dermatite Atópica/terapia , Eczema/patologia , Hipersensibilidade Alimentar/epidemiologia , Predisposição Genética para Doença/genética , Carga Global da Doença , Humanos , Lactente , Transtornos Mentais/epidemiologia , Microbiota/fisiologia , Terapia de Alvo Molecular/métodos , Fototerapia/métodos , Prevalência , Prurido/patologia , Qualidade de Vida , Rinite Alérgica/epidemiologia , Linfócitos T/patologia
3.
Nat Commun ; 11(1): 3800, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733040

RESUMO

Frameshift insertion/deletions (fs-indels) are an infrequent but highly immunogenic mutation subtype. Although fs-indels are degraded through the nonsense-mediated decay (NMD) pathway, we hypothesise that some fs-indels escape degradation and elicit anti-tumor immune responses. Using allele-specific expression analysis, expressed fs-indels are enriched in genomic positions predicted to escape NMD, and associated with higher protein expression, consistent with degradation escape (NMD-escape). Across four independent melanoma cohorts, NMD-escape mutations are significantly associated with clinical-benefit to checkpoint inhibitor (CPI) therapy (Pmeta = 0.0039). NMD-escape mutations are additionally found to associate with clinical-benefit in the low-TMB setting. Furthermore, in an adoptive cell therapy treated melanoma cohort, NMD-escape mutation count is the most significant biomarker associated with clinical-benefit. Analysis of functional T cell reactivity screens from personalized vaccine studies shows direct evidence of fs-indel derived neoantigens eliciting immune response, particularly those with highly elongated neo open reading frames. NMD-escape fs-indels represent an attractive target for biomarker optimisation and immunotherapy design.


Assuntos
Melanoma/genética , Melanoma/imunologia , Degradação do RNAm Mediada por Códon sem Sentido/genética , Linfócitos T/imunologia , Evasão Tumoral/genética , Transferência Adotiva , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/genética , Mutação da Fase de Leitura/genética , Humanos , Mutação INDEL/genética , Imunoterapia Adotiva , Linfócitos T/transplante , Sequenciamento Completo do Exoma
4.
Lancet Haematol ; 7(9): e690-e696, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32791043

RESUMO

People living with HIV are a global population with increased cancer risk but their access to modern immunotherapies for cancer treatment has been limited by socioeconomic factors and inadequate research to support safety and efficacy in this population. These immunotherapies include immune checkpoint inhibitors and advances in cellular immunotherapy, particularly chimeric antigen receptor (CAR) T-cell therapy. Despite the field of cancer immunotherapy rapidly expanding with ongoing clinical trials, people with HIV are often excluded from such trials. In 2019, post-approval evaluation of anti-CD19 CAR T-cell therapy in people with HIV and aggressive B-cell lymphoma showed the feasibility of CAR T-cell therapy for cancer in this excluded group. Along with expanded treatment options for people with HIV is the ability to assess the effects of immunotherapy on the latent HIV reservoir, with certain immunotherapies showing the ability to alleviate this burden. This Series paper addresses the increased cancer burden in people with HIV, the increasing evidence for the safety and efficacy of immunotherapies in the context of HIV and cancer, and opportunities for novel applications of CAR-T therapy for the treatment of both haematological malignancies and HIV.


Assuntos
Infecções por HIV/patologia , Neoplasias Hematológicas/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/transplante , Antígenos CD19/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Infecções por HIV/complicações , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/mortalidade , Humanos , Imunoterapia Adotiva , Taxa de Sobrevida , Linfócitos T/citologia , Linfócitos T/metabolismo
5.
Nat Commun ; 11(1): 4051, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792548

RESUMO

The RNA genome of the human immunodeficiency virus (HIV) is reverse-transcribed into DNA and integrated into the host genome, resulting in latent infections that are difficult to clear. Here we show an approach to eradicate HIV infections by selective elimination of host cells harboring replication-competent HIV (SECH), which includes viral reactivation, induction of cell death, inhibition of autophagy and the blocking of new infections. Viral reactivation triggers cell death specifically in HIV-1-infected T cells, which is promoted by agents that induce apoptosis and inhibit autophagy. SECH treatments can clear HIV-1 in >50% mice reconstituted with a human immune system, as demonstrated by the lack of viral rebound after withdrawal of treatments, and by adoptive transfer of treated lymphocytes into uninfected humanized mice. Moreover, SECH clears HIV-1 in blood samples from HIV-1-infected patients. Our results suggest a strategy to eradicate HIV infections by selectively eliminating host cells capable of producing HIV.


Assuntos
Infecções por HIV/prevenção & controle , HIV-1/patogenicidade , Animais , Antígenos CD34/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/fisiologia , Azepinas/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Humanos , Camundongos , Organofosfatos/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinonas/farmacologia , RNA Viral/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Triazóis/farmacologia
7.
Nat Commun ; 11(1): 4034, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788576

RESUMO

Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency with severe platelet abnormalities and complex immunodeficiency. Although clinical gene therapy approaches using lentiviral vectors have produced encouraging results, full immune and platelet reconstitution is not always achieved. Here we show that a CRISPR/Cas9-based genome editing strategy allows the precise correction of WAS mutations in up to 60% of human hematopoietic stem and progenitor cells (HSPCs), without impairing cell viability and differentiation potential. Delivery of the editing reagents to WAS HSPCs led to full rescue of WASp expression and correction of functional defects in myeloid and lymphoid cells. Primary and secondary transplantation of corrected WAS HSPCs into immunodeficient mice showed persistence of edited cells for up to 26 weeks and efficient targeting of long-term repopulating stem cells. Finally, no major genotoxicity was associated with the gene editing process, paving the way for an alternative, yet highly efficient and safe therapy.


Assuntos
Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Animais , Plaquetas/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem da Célula , Códon/genética , Feminino , Loci Gênicos , Células HEK293 , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Testes de Mutagenicidade , Células Mieloides/metabolismo , Linfócitos T/metabolismo , Síndrome de Wiskott-Aldrich/patologia , Proteína da Síndrome de Wiskott-Aldrich/genética
8.
N Engl J Med ; 383(6): 546-557, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32757523

RESUMO

BACKGROUND: Ofatumumab, a subcutaneous anti-CD20 monoclonal antibody, selectively depletes B cells. Teriflunomide, an oral inhibitor of pyrimidine synthesis, reduces T-cell and B-cell activation. The relative effects of these two drugs in patients with multiple sclerosis are not known. METHODS: In two double-blind, double-dummy, phase 3 trials, we randomly assigned patients with relapsing multiple sclerosis to receive subcutaneous ofatumumab (20 mg every 4 weeks after 20-mg loading doses at days 1, 7, and 14) or oral teriflunomide (14 mg daily) for up to 30 months. The primary end point was the annualized relapse rate. Secondary end points included disability worsening confirmed at 3 months or 6 months, disability improvement confirmed at 6 months, the number of gadolinium-enhancing lesions per T1-weighted magnetic resonance imaging (MRI) scan, the annualized rate of new or enlarging lesions on T2-weighted MRI, serum neurofilament light chain levels at month 3, and change in brain volume. RESULTS: Overall, 946 patients were assigned to receive ofatumumab and 936 to receive teriflunomide; the median follow-up was 1.6 years. The annualized relapse rates in the ofatumumab and teriflunomide groups were 0.11 and 0.22, respectively, in trial 1 (difference, -0.11; 95% confidence interval [CI], -0.16 to -0.06; P<0.001) and 0.10 and 0.25 in trial 2 (difference, -0.15; 95% CI, -0.20 to -0.09; P<0.001). In the pooled trials, the percentage of patients with disability worsening confirmed at 3 months was 10.9% with ofatumumab and 15.0% with teriflunomide (hazard ratio, 0.66; P = 0.002); the percentage with disability worsening confirmed at 6 months was 8.1% and 12.0%, respectively (hazard ratio, 0.68; P = 0.01); and the percentage with disability improvement confirmed at 6 months was 11.0% and 8.1% (hazard ratio, 1.35; P = 0.09). The number of gadolinium-enhancing lesions per T1-weighted MRI scan, the annualized rate of lesions on T2-weighted MRI, and serum neurofilament light chain levels, but not the change in brain volume, were in the same direction as the primary end point. Injection-related reactions occurred in 20.2% in the ofatumumab group and in 15.0% in the teriflunomide group (placebo injections). Serious infections occurred in 2.5% and 1.8% of the patients in the respective groups. CONCLUSIONS: Among patients with multiple sclerosis, ofatumumab was associated with lower annualized relapse rates than teriflunomide. (Funded by Novartis; ASCLEPIOS I and II ClinicalTrials.gov numbers, NCT02792218 and NCT02792231.).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Crotonatos/uso terapêutico , Injeções Subcutâneas/efeitos adversos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Toluidinas/uso terapêutico , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Linfócitos B , Encéfalo/patologia , Crotonatos/efeitos adversos , Progressão da Doença , Método Duplo-Cego , Feminino , Humanos , Estimativa de Kaplan-Meier , Imagem por Ressonância Magnética , Masculino , Esclerose Múltipla Recidivante-Remitente/patologia , Linfócitos T , Toluidinas/efeitos adversos
9.
Signal Transduct Target Ther ; 5(1): 156, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796814

RESUMO

The global Coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has affected more than eight million people. There is an urgent need to investigate how the adaptive immunity is established in COVID-19 patients. In this study, we profiled adaptive immune cells of PBMCs from recovered COVID-19 patients with varying disease severity using single-cell RNA and TCR/BCR V(D)J sequencing. The sequencing data revealed SARS-CoV-2-specific shuffling of adaptive immune repertories and COVID-19-induced remodeling of peripheral lymphocytes. Characterization of variations in the peripheral T and B cells from the COVID-19 patients revealed a positive correlation of humoral immune response and T-cell immune memory with disease severity. Sequencing and functional data revealed SARS-CoV-2-specific T-cell immune memory in the convalescent COVID-19 patients. Furthermore, we also identified novel antigens that are responsive in the convalescent patients. Altogether, our study reveals adaptive immune repertories underlying pathogenesis and recovery in severe versus mild COVID-19 patients, providing valuable information for potential vaccine and therapeutic development against SARS-CoV-2 infection.


Assuntos
Linfócitos B/imunologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/imunologia , Imunidade Celular , Imunidade Humoral , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos B/classificação , Linfócitos B/virologia , Betacoronavirus/imunologia , Estudos de Casos e Controles , China , Convalescença , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Progressão da Doença , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica , Pandemias , Pneumonia Viral/genética , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Receptores de Antígenos de Linfócitos B/classificação , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/classificação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Índice de Gravidade de Doença , Análise de Célula Única , Linfócitos T/classificação , Linfócitos T/virologia
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 32(7): 873-876, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32788028

RESUMO

Inflammatory response is an effective host defense mechanism to eliminate pathogens at the site of infection. The regression phase of inflammation mainly maintains the stable environment in tissues. Pro-inflammatory regression mediators (SPMs) are endogenous anti-inflammatory molecules, which play an important role in reducing excessive tissue damage and chronic inflammation. This paper reviews the interaction between SPMs and immune cells in inflammatory sites. By reviewing the relevant literature, it was found that SPMs regulate the components of innate and adaptive immune system, including neutrophils, macrophages, innate lymphocytes, natural killer cells and T cells.


Assuntos
Inflamação , Macrófagos , Humanos , Imunidade Inata , Mediadores da Inflamação , Neutrófilos , Linfócitos T
12.
Zool Res ; 41(5): 503-516, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32772513

RESUMO

As of June 2020, Coronavirus Disease 2019 (COVID-19) has killed an estimated 440 000 people worldwide, 74% of whom were aged ≥65 years, making age the most significant risk factor for death caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To examine the effect of age on death, we established a SARS-CoV-2 infection model in Chinese rhesus macaques ( Macaca mulatta) of varied ages. Results indicated that infected young macaques manifested impaired respiratory function, active viral replication, severe lung damage, and infiltration of CD11b + and CD8 + cells in lungs at one-week post infection (wpi), but also recovered rapidly at 2 wpi. In contrast, aged macaques demonstrated delayed immune responses with a more severe cytokine storm, increased infiltration of CD11b + cells, and persistent infiltration of CD8 + cells in the lungs at 2 wpi. In addition, peripheral blood T cells from aged macaques showed greater inflammation and chemotaxis, but weaker antiviral functions than that in cells from young macaques. Thus, the delayed but more severe cytokine storm and higher immune cell infiltration may explain the poorer prognosis of older aged patients suffering SARS-CoV-2 infection.


Assuntos
Envelhecimento/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Macaca mulatta/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Betacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Inflamação/imunologia , Inflamação/veterinária , Inflamação/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta/virologia , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Pandemias/veterinária , Pneumonia Viral/veterinária , Pneumonia Viral/virologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Carga Viral/imunologia , Carga Viral/veterinária , Replicação Viral/imunologia
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(4): 1367-1375, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32798428

RESUMO

OBJECTIVE: To investigate the killing effect of NK-92MI cells modified by chimeric antigen receptor (CD7-CAR) and specifically targeting CD7 to CD7+ hematological malignant cells. METHODS: Three types of hematological malignant tumor cells, including 5 cases of CD7+ acute T-lymphoblastic leukemia (T-ALL), 10 cases of acute myeloid leukemia (AML) and 6 cases of T-cell lymphoma were collected, centrifuged, cultured and used to detect the expression levels of tumor cell surface targets; 7-AAD, CD56-APC, CD3-FITC, IgG Fc-PE flow cytometry were used to detected the transfection efficiency of NK-92MI and CD7-CAR-NK-92MI cells, killing efficiencies of CD7-CAR-NK-92MI cells to CD7+ hematological tumor cells in vitro were determined by flow cytometry using PE Annexin V Apoptosis Detection Kit. Secretion differences of NK-92MI and CD7-CAR-NK-92MI cytokines interleukin (IL)-2, interferon (IFN)-γ, and granzyme B detection were estimated by using CBA kit. RESULTS: The killing efficiencies of CD7-CAR-modified NK-92MI cells to CD7+ T-ALL, AML, T-cell lymphoma tumor cells were significantly higher than those of NK-92MI cells without genetical modification. The difference showed statistically significant (P<0.05). The level of IFN-γ and granzyme B were significantly increased among cytokines secreted by CD7-CAR-modified NK-92MI cells as compared with those of NK-92MI cells without genetical modification (P<0.05) . CONCLUSION: CD7-CAR-modified NK-92MI cells have significantly improved killing efficiency against CD7+ T-ALL, AML and T lymphoma cells, and shows specific targeting effects, which provides a clinical basis for the treatment of CD7+ hematological malignancies.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais , Linfócitos T
15.
Genome Med ; 12(1): 70, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32791978

RESUMO

BACKGROUND: The ongoing COVID-19 pandemic has created an urgency to identify novel vaccine targets for protective immunity against SARS-CoV-2. Early reports identify protective roles for both humoral and cell-mediated immunity for SARS-CoV-2. METHODS: We leveraged our bioinformatics binding prediction tools for human leukocyte antigen (HLA)-I and HLA-II alleles that were developed using mass spectrometry-based profiling of individual HLA-I and HLA-II alleles to predict peptide binding to diverse allele sets. We applied these binding predictors to viral genomes from the Coronaviridae family and specifically focused on T cell epitopes from SARS-CoV-2 proteins. We assayed a subset of these epitopes in a T cell induction assay for their ability to elicit CD8+ T cell responses. RESULTS: We first validated HLA-I and HLA-II predictions on Coronaviridae family epitopes deposited in the Virus Pathogen Database and Analysis Resource (ViPR) database. We then utilized our HLA-I and HLA-II predictors to identify 11,897 HLA-I and 8046 HLA-II candidate peptides which were highly ranked for binding across 13 open reading frames (ORFs) of SARS-CoV-2. These peptides are predicted to provide over 99% allele coverage for the US, European, and Asian populations. From our SARS-CoV-2-predicted peptide-HLA-I allele pairs, 374 pairs identically matched what was previously reported in the ViPR database, originating from other coronaviruses with identical sequences. Of these pairs, 333 (89%) had a positive HLA binding assay result, reinforcing the validity of our predictions. We then demonstrated that a subset of these highly predicted epitopes were immunogenic based on their recognition by specific CD8+ T cells in healthy human donor peripheral blood mononuclear cells (PBMCs). Finally, we characterized the expression of SARS-CoV-2 proteins in virally infected cells to prioritize those which could be potential targets for T cell immunity. CONCLUSIONS: Using our bioinformatics platform, we identify multiple putative epitopes that are potential targets for CD4+ and CD8+ T cells, whose HLA binding properties cover nearly the entire population. We also confirm that our binding predictors can predict epitopes eliciting CD8+ T cell responses from multiple SARS-CoV-2 proteins. Protein expression and population HLA allele coverage, combined with the ability to identify T cell epitopes, should be considered in SARS-CoV-2 vaccine design strategies and immune monitoring.


Assuntos
Infecções por Coronavirus/imunologia , Epitopos/imunologia , Antígenos HLA/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , Alelos , Afinidade de Anticorpos , Biologia Computacional , Infecções por Coronavirus/genética , Infecções por Coronavirus/prevenção & controle , Epitopos/química , Epitopos/genética , Genoma Viral , Antígenos HLA/química , Antígenos HLA/genética , Humanos , Imunogenicidade da Vacina , Espectrometria de Massas , Pandemias , Vacinas Virais/química , Vacinas Virais/genética
16.
Adv Biol Regul ; 77: 100741, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32773102

RESUMO

Pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses an unprecedented challenge to healthcare systems due to the lack of a vaccine and specific treatment options. Accordingly, there is an urgent need to understand precisely the pathogenic mechanisms underlying this multifaceted disease. There is increasing evidence that the immune system reacts insufficiently to SARS-CoV-2 and thus contributes to organ damage and to lethality. In this review, we suggest that the overwhelming production of reactive oxygen species (ROS) resulting in oxidative stress is a major cause of local or systemic tissue damage that leads to severe COVID-19. It increases the formation of neutrophil extracellular traps (NETs) and suppresses the adaptive arm of the immune system, i.e. T cells that are necessary to kill virus-infected cells. This creates a vicious cycle that prevents a specific immune response against SARS-CoV-2. The key role of oxidative stress in the pathogenesis of severe COVID-19 implies that therapeutic counterbalancing of ROS by antioxidants such as vitamin C or NAC and/or by antagonizing ROS production by cells of the mononuclear phagocyte system (MPS) and neutrophil granulocytes and/or by blocking of TNF-α can prevent COVID-19 from becoming severe. Controlled clinical trials and preclinical models of COVID-19 are needed to evaluate this hypothesis.


Assuntos
Antioxidantes/uso terapêutico , Infecções por Coronavirus/epidemiologia , Armadilhas Extracelulares/imunologia , Linfopenia/epidemiologia , Neutrófilos/imunologia , Pandemias , Pneumonia Viral/epidemiologia , Acetilcisteína/uso terapêutico , Ácido Ascórbico/uso terapêutico , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/genética , Citocinas/imunologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Linfopenia/tratamento farmacológico , Linfopenia/imunologia , Linfopenia/virologia , NF-kappa B/genética , NF-kappa B/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/virologia , Estresse Oxidativo/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia
18.
Nat Commun ; 11(1): 4166, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820173

RESUMO

T cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CAR-T cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions. The key is the combination of (i) an improved CAR design which enables controlled CAR dimerization and (ii) a significant reduction of antigen-binding affinities to introduce dependence on bivalent interaction, i.e. avidity. The potential and versatility of the AvidCAR platform is exemplified by designing ON-switch CARs, which can be regulated with a clinically applied drug, and AND-gate CARs specifically recognizing combinations of two antigens. Thus, we expect that AvidCARs will be a highly valuable platform for the development of controllable CAR therapies with improved tumor specificity.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo
19.
Nat Commun ; 11(1): 4227, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839441

RESUMO

In hematopoietic cell transplants, alloreactive T cells mediate the graft-versus-leukemia (GVL) effect. However, leukemia relapse accounts for nearly half of deaths. Understanding GVL failure requires a system in which GVL-inducing T cells can be tracked. We used such a model wherein GVL is exclusively mediated by T cells that recognize the minor histocompatibility antigen H60. Here we report that GVL fails due to insufficient H60 presentation and T cell exhaustion. Leukemia-derived H60 is inefficiently cross-presented whereas direct T cell recognition of leukemia cells intensifies exhaustion. The anti-H60 response is augmented by H60-vaccination, an agonist αCD40 antibody (FGK45), and leukemia apoptosis. T cell exhaustion is marked by inhibitory molecule upregulation and the development of TOX+ and CD39-TCF-1+ cells. PD-1 blockade diminishes exhaustion and improves GVL, while blockade of Tim-3, TIGIT or LAG3 is ineffective. Of all interventions, FGK45 administration at the time of transplant is the most effective at improving memory and naïve T cell anti-H60 responses and GVL. Our studies define important causes of GVL failure and suggest strategies to overcome them.


Assuntos
Apresentação do Antígeno/imunologia , Efeito Enxerto vs Leucemia/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia/terapia , Linfócitos T/imunologia , Animais , Células Cultivadas , Humanos , Leucemia/imunologia , Leucemia/patologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Recidiva , Transplante Homólogo
20.
Sci Rep ; 10(1): 14179, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843695

RESUMO

A novel coronavirus (SARS-CoV-2) emerged from China in late 2019 and rapidly spread across the globe, infecting millions of people and generating societal disruption on a level not seen since the 1918 influenza pandemic. A safe and effective vaccine is desperately needed to prevent the continued spread of SARS-CoV-2; yet, rational vaccine design efforts are currently hampered by the lack of knowledge regarding viral epitopes targeted during an immune response, and the need for more in-depth knowledge on betacoronavirus immunology. To that end, we developed a computational workflow using a series of open-source algorithms and webtools to analyze the proteome of SARS-CoV-2 and identify putative T cell and B cell epitopes. Utilizing a set of stringent selection criteria to filter peptide epitopes, we identified 41 T cell epitopes (5 HLA class I, 36 HLA class II) and 6 B cell epitopes that could serve as promising targets for peptide-based vaccine development against this emerging global pathogen. To our knowledge, this is the first study to comprehensively analyze all 10 (structural, non-structural and accessory) proteins from SARS-CoV-2 using predictive algorithms to identify potential targets for vaccine development.


Assuntos
Betacoronavirus/imunologia , Biologia Computacional , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Interações Hospedeiro-Patógeno/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Proteínas Virais/imunologia , Sequência de Aminoácidos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Betacoronavirus/classificação , Betacoronavirus/genética , Betacoronavirus/metabolismo , Biologia Computacional/métodos , Infecções por Coronavirus/metabolismo , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Genoma Viral , Genômica/métodos , Humanos , Modelos Moleculares , Pandemias , Peptídeos/química , Peptídeos/imunologia , Filogenia , Pneumonia Viral/metabolismo , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas de Subunidades/imunologia , Proteínas Virais/química , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA