Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.711
Filtrar
1.
Eur J Histochem ; 63(4)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868322

RESUMO

Histochemical techniques are widely applied in biomedical research and, during the last twenty years, they were among the methods used in more than 590,000 scientific articles in indexed journals. However, a very small percentage of these papers were published in strictly histochemical journals. A possible strategy to widen the audience of the histochemical journals making them attractive to non-histochemist authors might be to publish and make open-access available the proceedings of the meetings and conferences of valued scientific societies whose fellows use microscopy and histochemistry in their experimental activity. In the last years' experience of the European Journal of Histochemistry, this approach was effective to increase the number of published articles on stem cells and development, connective tissue and nerve cell biology.


Assuntos
Histocitoquímica , Jornalismo/organização & administração , Sociedades Científicas , Animais , Congressos como Assunto , Células do Tecido Conjuntivo/citologia , Neurônios/citologia , Células-Tronco/citologia
2.
Tissue Cell ; 61: 30-34, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31759404

RESUMO

In oysters, nutrients are stored in a special type of cells referred to as vesicular-connective tissue cells (VCT-cells). These cells accumulate and provide nutrient to satisfy various needs of the organism, including gametogenesis. During the annual reproductive cycle, VCT-cells pass through a series of changes in their morphology associated with nutrients mobilization for developing germ cells. The results presented here show an approximately 33-35% increase in the number of autophagic vesicles in cytoplasm of VCT-cells in the gonadal area of C. gigas during the stage of active gametogenesis as compared to the resting stage of reproductive cycle. No destruction of VCT-cells due to autophagy or any other factors was observed, both in males and females. Our results indicate that autophagy does increase in VCT-cells of C. gigas and plays a certain role in nutrient mobilization from these cells.


Assuntos
Autofagia , Crassostrea/citologia , Nutrientes/metabolismo , Animais , Células do Tecido Conjuntivo/citologia , Vesículas Citoplasmáticas/metabolismo , Feminino , Gônadas/ultraestrutura , Masculino
3.
Am J Sports Med ; 47(9): 2188-2199, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31307219

RESUMO

BACKGROUND: Microfracture of focal chondral defects often produces fibrocartilage, which inconsistently integrates with the surrounding native tissue and possesses inferior mechanical properties compared with hyaline cartilage. Mechanical loading modulates cartilage during development, but it remains unclear how loads produced in the course of postoperative rehabilitation affect the formation of the new fibrocartilaginous tissue. PURPOSE: To assess the influence of different mechanical loading regimens, including dynamic compressive stress or rotational shear stress, on an in vitro model of microfracture repair based on fibrin gel scaffolds encapsulating connective tissue progenitor cells. STUDY DESIGN: Controlled laboratory study. METHODS: Cylindrical cores were made in bovine hyaline cartilage explants and filled with either (1) cartilage plug returned to original location (positive control), (2) fibrin gel (negative control), or (3) fibrin gel with encapsulated connective tissue progenitor cells (microfracture mimic). Constructs were then subjected to 1 of 3 loading regimens: (1) no loading (ie, unloaded), (2) dynamic compressive loading, or (3) rotational shear loading. On days 0, 7, 14, and 21, the integration strength between the outer chondral ring and the central insert was measured with an electroforce mechanical tester. The central core component, mimicking microfracture neotissue, was also analyzed for gene expression by real-time reverse-transcription polymerase chain reaction, glycosaminoglycan, and double-stranded DNA contents, and tissue morphology was analyzed histologically. RESULTS: Integration strengths between the outer chondral ring and central neotissue of the cartilage plug and fibrin + cells groups significantly increased upon exposure to compressive loading compared with day 0 controls (P = .007). Compressive loading upregulated expression of chondrogenesis-associated genes (SRY-related HGMG box-containing gene 9 [SOX9], collagen type II α1 [COL2A1], and increased ratio of COL2A1 to collagen type I α1 [COL1A1], an indicator of more hyaline phenotype) in the neotissue of the fibrin + cells group compared with the unloaded group at day 21 (SOX9, P = .0032; COL2A1, P < .0001; COL2A1:COL1A1, P = .0308). Fibrin + cells constructs exposed to shear loading expressed higher levels of chondrogenic genes compared with the unloaded condition, but the levels were not as high as those for the compressive loading condition. Furthermore, catabolic markers (MMP3 and ADAMTS 5) were significantly upregulated by shear loading (P = .0234 and P < .0001, respectively) at day 21 compared with day 0. CONCLUSION: Dynamic compressive loading enhanced neotissue chondrogenesis and maturation in a simulated in vitro model of microfracture, with generation of more hyaline-like cartilage and improved integration with the surrounding tissue. CLINICAL RELEVANCE: Controlled loading after microfracture may be beneficial in promoting the formation of more hyaline-like cartilage repair tissue; however, the loading regimens applied in this in vitro model do not yet fully reproduce the complex loading patterns created during clinical rehabilitation. Further optimization of in vitro models of cartilage repair may ultimately inform rehabilitation protocols.


Assuntos
Cartilagem Articular/metabolismo , Fibrina/metabolismo , Fraturas de Estresse/patologia , Células-Tronco/citologia , Animais , Cartilagem Articular/cirurgia , Bovinos , Condrócitos/metabolismo , Condrogênese/fisiologia , Colágeno/metabolismo , Células do Tecido Conjuntivo/citologia , Glicosaminoglicanos/metabolismo , Cartilagem Hialina/metabolismo
4.
Int J Mol Med ; 44(3): 927-938, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31257476

RESUMO

The present study aimed to further investigate the effects of high glucose on the function of circulating fibrocytes and its underlying mechanisms. The total peripheral blood mononuclear cells were obtained from normal glucose tolerance patients and type 2 diabetic mellitus patients. Circulating fibrocytes were stimulated with different glucose concentrations for different time periods (24, 48 and 72 h). Cell proliferation was determined by Cell Counting Kit­8 assay. The expression of connective tissue growth factor (CTGF) was detected by western blotting. The expression of COL­I was detected by flow cytometry. The apoptotic bodies of cells were detected by fluorescence microscopy after Hoechst33258 staining. The invasive and migration abilities of fibrocytes were detected by Transwell chamber assay. Secretion of stromal cell­derived factor 1 (SDF­1) was measured by ELISA. The circulating fibrocytes showed a typical spindle­shape and were double­positive for cluster of differentiation 45 (green) and COL­I (red). Compared with the 5.5 mmol/l glucose group, a high glucose concentration significantly promoted the proliferation of circulating fibrocytes and showed the most significant effects at 30 mmol/l after treatment for 48 h. AMD3100 showed no effects on the proliferation of circulating fibrocytes. Flow cytometry revealed that 30 mmol/l glucose significantly promoted the expression of COL­I vs. 5.5 mmol/l glucose group (P<0.01), while AMD3100 reversed this (P<0.05). Hoechst33258 staining showed no differences in the apoptotic bodies between experimental groups (P>0.05). Western blotting revealed that the expression of CTGF was decreased significantly by AMD3100 pretreatment (P<0.01). Transwell chamber assay showed that 30 mmol/l glucose significantly promoted the invasive and transfer abilities (P<0.01) of fibrocytes when compared with the 5.5 mmol/l glucose group. While AMD3100 reversed the cell migratory effects induced by high glucose (P<0.01). In addition, the secretion of SDF­1 stimulated by 30 mmol/l glucose DMEM showed no differences compared with 5.5 mmol/l glucose DMEM (P>0.05). High glucose stimulated the expressions of CTGF and COL­I, and promoted migration of circulating fibrocytes via the CXC chemokine receptor 4/SDF­1 axis.


Assuntos
Glicemia , Células do Tecido Conjuntivo/metabolismo , Glucose/metabolismo , Idoso , Apoptose , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células do Tecido Conjuntivo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Regulação da Expressão Gênica , Glucose/farmacologia , Compostos Heterocíclicos/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Receptores CXCR4/metabolismo , Transdução de Sinais
5.
Nat Commun ; 10(1): 1592, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962434

RESUMO

Regeneration and tissue turnover require new cell production and positional information. Planarians are flatworms capable of regenerating all body parts using a population of stem cells called neoblasts. The positional information required for tissue patterning is primarily harbored by muscle cells, which also control body contraction. Here we produce an in silico planarian matrisome and use recent whole-animal single-cell-transcriptome data to determine that muscle is a major source of extracellular matrix (ECM). No other ECM-secreting, fibroblast-like cell type was detected. Instead, muscle cells express core ECM components, including all 19 collagen-encoding genes. Inhibition of muscle-expressed hemicentin-1 (hmcn-1), which encodes a highly conserved ECM glycoprotein, results in ectopic peripheral localization of cells, including neoblasts, outside of the muscle layer. ECM secretion and hmcn-1-dependent maintenance of tissue separation indicate that muscle functions as a planarian connective tissue, raising the possibility of broad roles for connective tissue in adult positional information.


Assuntos
Tecido Conjuntivo/fisiologia , Matriz Extracelular/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Planárias/fisiologia , Animais , Células do Tecido Conjuntivo/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Células Musculares/fisiologia , Planárias/genética , Domínios Proteicos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA
6.
Ann Rheum Dis ; 78(7): 929-933, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31018959

RESUMO

OBJECTIVE: We investigated whether the normal human spinal enthesis contained resident myeloid cell populations, capable of producing pivotal proinflammatory cytokines including tumour necrosis factor (TNF) and interleukin (IL)-23 and determined whether these could be modified by PDE4 inhibition. METHODS: Normal human enthesis soft tissue (ST) and adjacent perientheseal bone (PEB) (n=15) were evaluated using immunohistochemistry (IHC), digested for myeloid cell phenotyping, sorted and stimulated with different adjuvants (lipopolysaccharide and mannan). Stimulated enthesis fractions were analysed for inducible production of spondyloarthropathy disease-relevant mediators (IL-23 full protein, TNF, IL-1ß and CCL20). Myeloid populations were also compared with matched blood populations for further mRNA analysis and the effect of PDE4 inhibition was assessed. RESULTS: A myeloid cell population (CD45+ HLADR+ CD14+ CD11c+) phenotype was isolated from both the ST and adjacent PEB and termed 'CD14+ myeloid cells' with tissue localisation confirmed by CD14+ IHC. The CD14- fraction contained a CD123+ HLADR+ CD11c- cell population (plasmacytoid dendritic cells). The CD14+ population was the dominant entheseal producer of IL-23, IL-1ß, TNF and CCL20. IL-23 and TNF from the CD14+ population could be downregulated by a PDE4I and other agents (histamine and 8-Bromo-cAMP) which elevate cAMP. Entheseal CD14+ cells had a broadly similar gene expression profile to the corresponding CD14+ population from matched blood but showed significantly lower CCR2 gene expression. CONCLUSIONS: The human enthesis contains a CD14+ myeloid population that produces most of the inducible IL-23, IL-1ß, TNF and CCL20. This population has similar gene expression profile to the matched blood CD14+ population.


Assuntos
Células do Tecido Conjuntivo/metabolismo , Interleucina-23/biossíntese , Células Mieloides/metabolismo , Quimiocina CCL20/biossíntese , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Células Dendríticas/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-1beta/biossíntese , Receptores de Lipopolissacarídeos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
7.
Philos Trans A Math Phys Eng Sci ; 377(2144): 20180070, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30879412

RESUMO

For many organisms, shapes emerge from growth, which generates stresses, which in turn can feedback on growth. In this review, theoretical methods to analyse various aspects of morphogenesis are discussed with the aim to determine the most adapted method for tissue mechanics. We discuss the need to work at scales intermediate between cells and tissues and emphasize the use of finite elasticity for this. We detail the application of these ideas to four systems: active cells embedded in tissues, brain cortical convolutions, the cortex of Caenorhabditis elegans during elongation and finally the proliferation of epithelia on extracellular matrix. Numerical models well adapted to inhomogeneities are also presented. This article is part of the theme issue 'Rivlin's legacy in continuum mechanics and applied mathematics'.


Assuntos
Fenômenos Fisiológicos Celulares , Modelos Biológicos , Morfogênese/fisiologia , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Caenorhabditis elegans/embriologia , Proliferação de Células , Córtex Cerebral/crescimento & desenvolvimento , Células do Tecido Conjuntivo/fisiologia , Elasticidade , Humanos
8.
PLoS One ; 14(3): e0213912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883580

RESUMO

Glucose metabolism is altered in injured and healing tendons. However, the mechanism by which the glucose metabolism is involved in the pathogenesis of tendon healing process remains unclear. Injured tendons do not completely heal, and often induce fibrous scar and chondroid lesion. Because previous studies have shown that tendon progenitors play roles in tendon repair, we asked whether connective tissue progenitors appearing in injured tendons alter glucose metabolism during tendon healing process. We isolated connective tissue progenitors from the human injured tendons, obtained at the time of primary surgical repair of rupture or laceration. We first characterized the change in glucose metabolism by metabolomics analysis using [1,2-13C]-glucose using the cells isolated from the lacerated flexor tendon. The flux of glucose to the glycolysis pathway was increased in the connective tissue progenitors when they proceeded toward tenogenic and chondrogenic differentiation. The influx of glucose to the tricarboxylic acid (TCA) cycle and biosynthesis of amino acids from the intermediates of the TCA cycle were strongly stimulated toward chondrogenic differentiation. When we treated the cultures with 2-deoxy-D-glucose (2DG), an inhibitor of glycolysis, 2DG inhibited chondrogenesis as characterized by accumulation of mucopolysaccharides and expression of AGGRECAN. Interestingly, 2DG strongly stimulated expression of tenogenic transcription factor genes, SCLERAXIS and MOHAWK under both chondrogenic and tenogenic differentiation conditions. The findings suggest that control of glucose metabolism is beneficial for tenogenic differentiation of connective tissue progenitors.


Assuntos
Glucose/metabolismo , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Adulto , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Condrogênese/fisiologia , Células do Tecido Conjuntivo/efeitos dos fármacos , Células do Tecido Conjuntivo/metabolismo , Células do Tecido Conjuntivo/patologia , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia , Traumatismos dos Tendões/fisiopatologia , Tendões/metabolismo , Tendões/patologia , Cicatrização/fisiologia , Adulto Jovem
9.
Cells ; 8(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717296

RESUMO

Steroidal anti-inflammatory drugs are widely used for the treatment of chronic cutaneous inflammation, such as atopic dermatitis, although it remains unknown how they modulate cutaneous mast cell functions. We investigated the effects of prolonged treatment with a synthetic glucocorticoid, dexamethasone, on murine connective tissue-type mast cells using in vitro and in vivo models. Our connective tissue-type bone marrow-derived cultured mast cell model was found to be sensitive to mast cell secretagogues, such as compound 48/80 and substance P, and higher expression levels of α subunit of a trimeric G protein, Gi1, and several Mas-related G protein-coupled receptor (Mrgpr) subtypes were observed in comparison with immature cultured mast cells. Secretagogue-induced degranulation and up-regulation of these genes was suppressed when cultured in the presence of dexamethasone. The profiles of granule constituents were drastically altered by dexamethasone. Topical application of dexamethasone down-modulated secretagogue-induced degranulation and the expression levels of several Mrgpr subtypes in cutaneous tissue. These results suggest that mast cell-mediated IgE-independent cutaneous inflammation could be suppressed by steroidal anti-inflammatory drugs through the down-regulation of G αi1 and several Mrgpr subtypes in mast cells.


Assuntos
Degranulação Celular , Células do Tecido Conjuntivo/citologia , Dexametasona/farmacologia , Imunoglobulina E/metabolismo , Mastócitos/fisiologia , Células 3T3 , Animais , Células da Medula Óssea/citologia , Degranulação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Histamina/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , RNA/metabolismo , Pele/irrigação sanguínea , Pele/efeitos dos fármacos
10.
Cytotherapy ; 21(2): 148-161, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30595353

RESUMO

Bone marrow-derived stromal cells or mesenchymal stromal cells (BMSCs or MSCs, as we will call them in this work) are multipotent progenitor cells that can differentiate into osteoblasts, adipocytes and chondrocytes. In addition, MSCs have been shown to modulate the function of a variety of immune cells. Donor age has been shown to affect the regenerative potential, differentiation, proliferation and anti-inflammatory potency of MSCs; however, the impact of donor age on their immunosuppressive activity is unknown. In this study, we evaluated the ability of MSCs derived from very young children and adults on T-cell suppression and cytokine secretion by monocytes/macrophages. MSCs were obtained from extra digits of children between 10 and 21 months and adults between 28 and 64 years of age. We studied cell surface marker expression, doubling time, lineage differentiation potential and immunosuppressive function of the MSCs. Young MSCs double more quickly and differentiate into bone and fat cells more efficiently than those from older donors. They also form more and dense colonies of fibroblasts (colony forming unit-fibroblast [CFU-F]). MSCs from both young and adult subjects suppressed T-cell proliferation in a mitogen-induced assay at 1:3 and 1:30 ratios. At a 1:30 ratio, however, MSCs from adults did not, but MSCs from infants did suppress T-cell proliferation. In the mixed lymphocyte reaction assay, MSCs from infants produced similar levels of suppression at all three MSC/T-cell ratios, but adult MSCs only inhibited T-cell proliferation at a 1:3 ratio. Cytokine analyses of co-cultures of MSCs and macrophages showed that both adult and young MSCs suppress tumor necrosis factor alpha (TNF-α) and induce interleukin-10 (IL-10) production in macrophage co-culture assay in a similar manner. Overall, this work shows that developing MSCs display a higher level of immunosuppression than mature MSCs.


Assuntos
Interleucina-10/biossíntese , Células-Tronco Mesenquimais/imunologia , Polidactilia/cirurgia , Fator de Necrose Tumoral alfa/biossíntese , Adulto , Fatores Etários , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células do Tecido Conjuntivo/fisiologia , Feminino , Humanos , Lactente , Teste de Cultura Mista de Linfócitos , Masculino , Pessoa de Meia-Idade , Polidactilia/patologia
11.
Biomaterials ; 192: 140-148, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448698

RESUMO

Fetal development may be compromised by adverse events at the placental interface between mother and fetus. However, it is still unclear how the communication between mother and fetus occurs through the placenta. In vitro - models of the human placental barrier, which could help our understanding and which recreate three-dimensional (3D) structures with biological functionalities and vasculatures, have not been reported yet. Here we present a 3D-vascularized human primary placental barrier model which can be constructed in 1 day. We illustrate the similarity of our model to first trimester human placenta, both in its structure and in its ability to respond to altered oxygen and to secrete factors that cause damage cells across the barrier including embryonic cortical neurons. We use this model to highlight the possibility that both the trophoblast and the endothelium within the placenta might play a role in the fetomaternal dialogue.


Assuntos
Células do Tecido Conjuntivo/citologia , Endotélio Vascular/citologia , Placenta/irrigação sanguínea , Trofoblastos/citologia , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Neurônios/citologia , Placenta/citologia , Gravidez
12.
Matrix Biol ; 78-79: 236-254, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30130585

RESUMO

Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.


Assuntos
Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Membro Anterior/embriologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Mioblastos/citologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células do Tecido Conjuntivo/citologia , Células do Tecido Conjuntivo/metabolismo , Desenvolvimento Embrionário , Feminino , Membro Anterior/citologia , Membro Anterior/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Himecromona/farmacologia , Masculino , Camundongos , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo
13.
Int J Mol Sci ; 19(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486366

RESUMO

Atherosclerosis and aortic valve sclerosis are cardiovascular diseases with an increasing prevalence in western societies. Statins are widely applied in atherosclerosis therapy, whereas no pharmacological interventions are available for the treatment of aortic valve sclerosis. Therefore, valve replacement surgery to prevent acute heart failure is the only option for patients with severe aortic stenosis. Both atherosclerosis and aortic valve sclerosis are not simply the consequence of degenerative processes, but rather diseases driven by inflammatory processes in response to lipid-deposition in the blood vessel wall and the aortic valve, respectively. The p38 mitogen-activated protein kinase (MAPK) is involved in inflammatory signaling and activated in response to various intracellular and extracellular stimuli, including oxidative stress, cytokines, and growth factors, all of which are abundantly present in atherosclerotic and aortic valve sclerotic lesions. The responses generated by p38 MAPK signaling in different cell types present in the lesions are diverse and might support the progression of the diseases. This review summarizes experimental findings relating to p38 MAPK in atherosclerosis and aortic valve sclerosis and discusses potential functions of p38 MAPK in the diseases with the aim of clarifying its eligibility as a pharmacological target.


Assuntos
Valva Aórtica/metabolismo , Valva Aórtica/patologia , Aterosclerose/etiologia , Aterosclerose/metabolismo , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Aterosclerose/patologia , Células do Tecido Conjuntivo/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Doenças das Valvas Cardíacas/patologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Sistema de Sinalização das MAP Quinases , Miócitos de Músculo Liso/metabolismo , Miofibroblastos/metabolismo
14.
Microsc Res Tech ; 81(11): 1268-1274, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30351479

RESUMO

Telocyte (TC) is an interesting unique interstitial cell demonstrated in many human and animal tissues and organs. This study verified, for the first time, the pattern of TC distribution in the testicular tissue of New Zealand White rabbits using histological, immunohistochemical, and electron microscopic tools. Rabbit testicular tissue samples were obtained from three pairs of adult healthy New Zealand white rabbit by surgical procedures. The testicular tissues were stained with hematoxyline-eosin, Crossmon's trichrome and Periodic acid Schiff. The immunohistochemistry was performed using three different antibodies CD34, CD117, and vimentin. The testes were examined by scanning and transmission electron microscopy. Histologically, TCs formed a sheath surrounding the seminiferous tubules. Other TCs were located in the interstitial tissue of the rabbit testis. Immunohistochemically, TCs reacted strongly with CD34, CD117, and vimentin. Scanning electron microscopic findings clearly elucidated the spreading pattern of TCs and their cytoplasmic processes with the interstitial tissue including blood vessels. Both homocellular and heterocellular junctions were demonstrated by transmission electron microscope. On the basis of TCs distribution and connections, the before mentioned data suggested that, TCs may play a potential role in maintaining the testicular construction and regulation. A future work is needed to clarify the actual role played by TCs in monitoring testicular fertility. RESEARCH HIGHLIGHTS: Telocyte (TC) is a unique cell demonstrated in human and animal tissues. TCs formed a sheath surrounding the seminiferous tubules in rabbits and may be located in interstitial tissue. Immunohistochemically, TCs reacted strongly with CD34 and CD117.


Assuntos
Células do Tecido Conjuntivo/ultraestrutura , Tecido Conjuntivo/anatomia & histologia , Telócitos/ultraestrutura , Testículo/anatomia & histologia , Testículo/citologia , Animais , Anticorpos/imunologia , Antígenos CD34/imunologia , Células do Tecido Conjuntivo/fisiologia , Imunofluorescência , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Proteínas Proto-Oncogênicas c-kit/imunologia , Coelhos , Telócitos/fisiologia , Vimentina/imunologia
15.
Science ; 362(6413)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30262634

RESUMO

Amputation of the axolotl forelimb results in the formation of a blastema, a transient tissue where progenitor cells accumulate prior to limb regeneration. However, the molecular understanding of blastema formation had previously been hampered by the inability to identify and isolate blastema precursor cells in the adult tissue. We have used a combination of Cre-loxP reporter lineage tracking and single-cell messenger RNA sequencing (scRNA-seq) to molecularly track mature connective tissue (CT) cell heterogeneity and its transition to a limb blastema state. We have uncovered a multiphasic molecular program where CT cell types found in the uninjured adult limb revert to a relatively homogenous progenitor state that recapitulates an embryonic limb bud-like phenotype including multipotency within the CT lineage. Together, our data illuminate molecular and cellular reprogramming during complex organ regeneration in a vertebrate.


Assuntos
Reprogramação Celular/fisiologia , Células do Tecido Conjuntivo/fisiologia , Membro Anterior/fisiologia , Regeneração/fisiologia , Ambystoma mexicanum , Animais , Linhagem da Célula , Rastreamento de Células , Genes Reporter , Integrases , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única , Células-Tronco/fisiologia
16.
Int Endod J ; 51(11): 1187-1195, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29679496

RESUMO

AIM: To explore the expression profile of CD45+/pro-collagen I+ fibrocytes in intact dental pulps as well as during wound healing in adult dental pulp tissue. METHODOLOGY: A total of 16 healthy permanent teeth were obtained from young patients (18 to 25 years) undergoing orthodontic treatment. Routine pulp capping with mineral trioxide aggregate (MTA) was performed under local anaesthesia to induce a mineralized barrier at the exposed surface. Teeth were extracted from patients after 7, 14 and 35 days. Sections of the extracted teeth were prepared and stained for various markers using indirect immunofluorescence. Fibrocytes were counted, and the data were statistically evaluated using the Dunnett test. RESULTS: In uninflammed pulp tissue, a pro-collagen I-positive reaction was detected in odontoblasts, as well as in perivascular cells. Most of the CD45-positive cells were negative for pro-collagen I in normal pulp tissue, whereas CD45+/pro-collagen I+ fibrocytes were detected 7 days after injury. At day 14, fibrocytes were recognized under the fibrous matrix in contact with MTA and had infiltrated into regions of new capillary formation, where the fibrocytes were positively stained for vascular endothelial growth factor. By 35 days, fibrocytes were few, coincident with the formation of dentine bridges. The number of fibrocytes peaked 7 days post-injury and decreased at 14 days. CONCLUSIONS: The presence of fibrocytes in human pulp wound healing was observed. The spatiotemporal distribution of fibrocytes suggests that fibrocytes are involved in the early stages of pulp wound healing, specifically by contributing to new blood vessel formation.


Assuntos
Medula Óssea/patologia , Células do Tecido Conjuntivo/patologia , Polpa Dentária/patologia , Adolescente , Adulto , Compostos de Alumínio/farmacologia , Compostos de Alumínio/uso terapêutico , Calcificação Fisiológica , Compostos de Cálcio/farmacologia , Compostos de Cálcio/uso terapêutico , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/lesões , Capeamento da Polpa Dentária/métodos , Exposição da Polpa Dentária/terapia , Combinação de Medicamentos , Humanos , Odontoblastos/efeitos dos fármacos , Odontoblastos/patologia , Óxidos/farmacologia , Óxidos/uso terapêutico , Agentes de Capeamento da Polpa Dentária e Pulpectomia/farmacologia , Agentes de Capeamento da Polpa Dentária e Pulpectomia/uso terapêutico , Silicatos/farmacologia , Silicatos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Cicatrização/fisiologia , Adulto Jovem
17.
Cytotherapy ; 20(3): 343-360, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396254

RESUMO

BACKGROUND AIMS: Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). METHODS: Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (PCTP) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. RESULTS: Mean [Cell], [CTP] and PCTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm2; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. CONCLUSIONS: The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences between cell populations in biological performance. Understanding the underlying reasons for variation in the concentration, prevalence, marker expression and biological potential of CTPs between patients and source tissues and determining the means of managing this variation will contribute to the rational development of cell-based clinical diagnostics and targeted cell-based therapies.


Assuntos
Tecido Adiposo/citologia , Biomarcadores/metabolismo , Osso e Ossos/citologia , Células do Tecido Conjuntivo/citologia , Células-Tronco/citologia , Adulto , Idoso , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Células Cultivadas , Células do Tecido Conjuntivo/fisiologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Células-Tronco/fisiologia
18.
Invest Ophthalmol Vis Sci ; 59(1): 322-329, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346490

RESUMO

Purpose: We examined the pattern and extent of connective tissue distribution in the extraocular muscles (EOMs) and determined the ability of the interconnected connective tissues to disseminate force laterally. Methods: Human EOMs were examined for collagens I, III, IV, and VI; fibronectin; laminin; and elastin using immunohistochemistry. Connective tissue distribution was examined with scanning electron microscopy. Rabbit EOMs were examined for levels of force transmission longitudinally and transversely using in vitro force assessment. Results: Collagens I, III, and VI localized to the endomysium, perimysium, and epimysium. Collagen IV, fibronectin, and laminin localized to the basal lamina surrounding all myofibers. All collagens localized similarly in the orbital and global layers throughout the muscle length. Elastin had the most irregular pattern and ran longitudinally and circumferentially throughout the length of all EOMs. Scanning electron microscopy showed these elements to be extensively interconnected, from endomysium through the perimysium to the epimysium surrounding the whole muscle. In vitro physiology demonstrated force generation in the lateral dimension, presumably through myofascial transmission, which was always proportional to the force generated in the longitudinally oriented muscles. Conclusions: A striking connective tissue matrix interconnects all the myofibers and extends, via perimysial connections, to the epimysium. These interconnections are significant and allow measurable force transmission laterally as well as longitudinally, suggesting that they may contribute to the nonlinear force summation seen in motor unit recording studies. This provides strong evidence that separate compartmental movements are unlikely as no region is independent of the rest of the muscle.


Assuntos
Células do Tecido Conjuntivo/metabolismo , Músculos Oculomotores/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Colágeno/metabolismo , Elastina/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Imuno-Histoquímica , Laminina/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas , Músculos Oculomotores/metabolismo , Coelhos
19.
J Cell Physiol ; 233(3): 2067-2074, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28294324

RESUMO

Fibrosis of the subsynovial connective tissue (SSCT) in carpal tunnel syndrome (CTS) patients is increasingly recognized as an important aspect of CTS pathophysiology. In this study, we evaluated the effect of blocking profibrotic pathways in fibroblasts from the SSCT in CTS patients. Fibroblasts were stimulated with transforming growth factor ß1 (TGF-ß1), and then treated either with a specific fibrosis pathway inhibitor targeting TGF-ß receptor type 1 (TßRI), platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR), or vascular endothelial growth factor receptor (VEGFR). Fibrosis array and quantitative real-time polymerase chain reaction of fibrotic genes were evaluated. Array gene expression analysis revealed significant down-regulation of multiple fibrotic genes after treatment with TßRI, PDGFR, and VEGFR inhibitors. No array fibrotic genes were significantly down-regulated with EGFR inhibition. Further gene expression analysis of known CTS fibrosis markers collagen type I A2 (Col1), collagen type III A1 (Col3), connective tissue growth factor (CTGF), and SERPINE1 showed significantly down-regulation after TßRI inhibition. In contrast, VEGFR inhibition significantly down-regulated CTGF and SERPINE1, whereas, PDGFR and EGFR inhibition significantly down-regulated Col3. Taken together the inhibition of TßRI appears to be the primary mediator of fibrotic gene expression in fibroblasts from CTS patients. TGF-ß/Smad activity was further evaluated, and as expected inhibition of Smad activity was significantly down-regulated after inhibition of TßRI, but not with PDGFR, VEGFR, or EGFR inhibition. These results indicate that local therapies specifically targeting TGF-ß signaling alone or in combination offer the potential of a novel local antifibrosis therapy for patients with CTS.


Assuntos
Síndrome do Túnel Carpal/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Fibrose/patologia , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Membrana Sinovial/patologia , Fator de Crescimento Transformador beta/metabolismo , Síndrome do Túnel Carpal/patologia , Células Cultivadas , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Colágeno Tipo III/biossíntese , Colágeno Tipo III/genética , Tecido Conjuntivo/patologia , Células do Tecido Conjuntivo/citologia , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fator de Crescimento do Tecido Conjuntivo/genética , Fibroblastos/metabolismo , Fibrose/tratamento farmacológico , Humanos , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Inibidor 1 de Ativador de Plasminogênio/genética , Membrana Sinovial/citologia
20.
J Asthma ; 55(9): 975-983, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28972433

RESUMO

Objective: Fibrocyte localization to the airways and thymic stromal lymphopoietin (TSLP) overexpression in the lung are features of severe asthma. The aim of this study was to determine whether TSLP contributes to fibrocyte trafficking and airway remodeling in a mouse model of allergic asthma. Methods: We established a chronic asthma animal model by administering house dust mite (HDM) extracts intranasally for up to 5 consecutive weeks. Mouse anti-TSLP monoclonal antibody (mAb) was given intraperitoneally starting the 4th week. Fluorescence-labeled CD34/collagen I (Col I)-dual-positive fibrocytes were examined by confocal microscopy. The level of TGF-ß1 in the bronchoalveolar lavage (BAL) fluid was determined by ELISA. Results: We found significantly increased levels of TSLP and TGF-ß1 in the lung of the mice subjected to repeated allergen exposure, which was accompanied by increased number of fibrocytes in the sub-epithelial zone and the BAL fluid. However, blocking TSLP markedly decreased the production of TGF-ß1, reduced the number of fibrocytes and subsequently prevented alterations of both airway and vascular structures. Conclusions: Our data suggested that TSLP might function in airway remodeling by promoting circulating fibrocyte recruitment to the lung in the mice subjected to chronic allergen exposure. These results provide a better rationale for targeting the interaction between TSLP and fibrocytes as a therapeutic approach for chronic allergic asthma.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/fisiopatologia , Citocinas/biossíntese , Fator de Crescimento Transformador beta1/biossíntese , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Doença Crônica , Células do Tecido Conjuntivo , Modelos Animais de Doenças , Feminino , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Pyroglyphidae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA