Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.336
Filtrar
2.
J Oral Sci ; 62(3): 298-302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581177

RESUMO

In this study, a Porphyromonas gingivalis (P.g.)-infected mouse periodontitis model was used to investigate the effect of omega-3 fatty acid intake on differentiation and maturation of cultured osteoclast. Four-week-old C57BL/6JJcl mice were divided into four groups according to the diets they were fed from the beginning of the experiment (i.e., food containing omega-3 or omega-6 fatty acids) and whether they were orally administered P.g. Thirty-three days after beginning the experiment, bone marrow cells were sampled from the femoral bone of mice from each group and differentiated into osteoclasts; the effects of the ingestion of different fatty acids were subsequently investigated. There was no statistical interaction between the different fatty acids and P.g. infection on the number of osteoclasts (P = 0.6). However, the fatty acid type affected the number of osteoclasts in mice (P = 0.0013), with the omega-3 groups demonstrating lower osteoclast numbers than the omega-6 groups. Furthermore, the addition of resolvin E1 (RvE1), which is an omega-3 fatty acid-derived lipid mediator, suppressed the differentiation of mouse cultured osteoclasts (P < 0.0001). Therefore, the ingestion of omega-3 fatty acids may suppress osteoclast differentiation while inhibiting bone resorption and tissue destruction due to periodontitis.


Assuntos
Perda do Osso Alveolar , Ácidos Graxos Ômega-3 , Animais , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos , Porphyromonas gingivalis
3.
PLoS Biol ; 18(6): e3000731, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479501

RESUMO

The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-ß-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.


Assuntos
Envelhecimento/patologia , Lamina Tipo A/deficiência , Músculo Esquelético/patologia , Osteoporose/patologia , Animais , Anticorpos Bloqueadores/farmacologia , Fenômenos Biomecânicos , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteoporose/sangue , Fenótipo
4.
Phytomedicine ; 75: 153234, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510335

RESUMO

BACKGROUND: Diaporisoindole E (SA8), an isoprenylisoindole alkaloids isolated from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3, was reported with anti-inflammatory activity in RAW264.7 cells. However, the effect of SA8 in bone metabolism is unknown. PURPOSE: The purpose of this study is to investigate the inhibitory effect of SA8 in RANKL-induced osteoclastogenesis and to explore its mechanism of action. METHODS: Osteoclastogenesis was assayed by TRAP staining. Expression of osteoclast specific genes was evaluated by real time-PCR. The inhibition of phosphorylation of the protein was measured by western blot analysis. The transcription activity of NF-κB was conducted using luciferase reporter gene assays. Osteoblast differentiation was assayed by alkaline phosphatase and Alizarin Red staining. RESULTS: SA8 significantly inhibited the osteoclast differentiation in a dose- and time-dependent manner, which is consistent with the suppression of osteoclast specific genes including TRAP, DC-stamp, NFATc1, MMP-9, and ATP6v0d2. Further study on the mechanism of action revealed that SA8 inhibited osteoclast differentiation by attenuating PI3K/AKT and MAPK but not through NF-κB signaling pathways. Moreover, SA8 also suppressed bone resorption activity in a hydroxyapatite-coated plate without affecting osteoblast differentiation in C3H10T1/2 using alkaline phosphatase and Alizarin Red staining. CONCLUSIONS: These findings suggest that SA8 (Diaporisoindole E) is the potential anti-osteoporosis agent.


Assuntos
Alcaloides Indólicos/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoclastos/fisiologia , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
5.
Braz Dent J ; 31(2): 122-126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32556010

RESUMO

Although periodontitis is one of the commonest infectious inflammatory diseases in humans, the mechanisms involved with its immunopathology remain ill understood. Numerous molecules may induce inflammation and lead to bone resorption, secondary to activation of monocytes into osteoclasts. TACE (TNF-α converting enzyme) and DC-STAMP (dendritic cell-specific transmembrane protein) appear to play a role on bone resorption since TACE induces the release of sRANKL (soluble receptor activator of nuclear factor kappa-ß ligand) whereas DC-STAMP is a key factor in osteoclast induction. The present study evaluated the levels of TACE and DC-STAMP in patients with and without periodontitis. Twenty individuals were selected: 10 periodontally healthy participants undergoing gingivectomy for esthetic reasons and 10 diagnosed with periodontitis. Protein levels of such molecules in gingival tissue were established using Western blotting. Protein levels of both TACE and DC-STAMP were higher in the periodontitis group than in the control group (p<0.05; Student t-test). In conclusion, TACE and DC-STAMP protein levels are elevated in patients with periodontitis, favoring progression of bone resorption.


Assuntos
Proteína ADAM17 , Proteínas Adaptadoras de Transdução de Sinal , Reabsorção Óssea , Proteínas de Membrana , Periodontite , Proteína ADAM17/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular , Humanos , Proteínas de Membrana/metabolismo , Osteoclastos
6.
Cell Prolif ; 53(6): e12827, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32406154

RESUMO

OBJECTIVES: Previously, we found that by regulating T helper (Th) cell polarization, calcitriol intervention inhibited lipopolysaccharide (LPS)-induced alveolar bone loss in an animal periodontitis model, but the underlying cellular events remain unknown. MATERIALS AND METHODS: In this study, mouse Th cells were incubated in an inflammatory environment in the presence of dendritic cells (DCs) and LPS. Then, the potential of the Th cells to undergo Th2/Th17 polarization, the RANKL expression of the polarized Th cells and the subsequent influences of the polarized Th cells on RAW264.7 cell osteoclastogenesis in response to calcitriol administration were assessed. Finally, the effects of calcitriol on antigen presentation by DCs during these cellular events were evaluated. RESULTS: In response to calcitriol administration, Th cells in an inflammatory environment exhibited an enhanced potential for Th2 polarization along with a decreased potential for Th17 polarization. In addition, RANKL expression in Th17-polarized cells was largely inhibited. Furthermore, inflammation-induced osteoclastogenesis in RAW264.7 cells was suppressed following coculture with calcitriol-treated Th cells. During these cellular events, increased expression of Th2 promoters (such as OX-40L and CCL17) and decreased expression of Th17 promoters (such as IL-23 and IL-6) were found in DCs. CONCLUSIONS: Calcitriol can inhibit osteoclastogenesis in an inflammatory environment by changing the proportion and function of Th cell subsets. Our findings suggest that calcitriol may be an effective therapeutic agent for treating periodontitis.


Assuntos
Calcitriol/farmacologia , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Células Cultivadas , Células Dendríticas/imunologia , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Ligante RANK/metabolismo , Células RAW 264.7 , Células Th17/imunologia , Células Th2/imunologia
7.
Life Sci ; 255: 117827, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450170

RESUMO

AIMS: Data suggest pharmacological treatment of depression with selective serotonin reuptake inhibitors (SSRI) may impair bone health. Our group has previously modeled compromised craniofacial healing after treatment with sertraline, a commonly prescribed SSRI, and hypothesized potential culprits: alterations in bone cells, collagen, and/or inflammation. Here we interrogate bone lineage cell alterations due to sertraline treatment as a potential cause of the noted compromised bone healing. MAIN METHODS: Murine pre-osteoblast, pre-osteoclast, osteoblast, and osteoclast cells were treated with clinically relevant concentrations of the SSRI. Studies focused on serotonin pathway targets, cell viability, apoptosis, differentiation, and the osteoblast/osteoclast feedback loop. KEY FINDINGS: All cells studied express neurotransmitters (e.g. serotonin transporter, SLC6A4, SSRI target) and G-protein-coupled receptors associated with the serotonin pathway. Osteoclasts presented the greatest native expression of Slc6a4 with all cell types exhibiting decreases in Slc6a4 expression after SSRI treatment. Pre-osteoclasts exhibited alteration to their differentiation pathway after treatment. Pre-osteoblasts and osteoclasts showed reduced apoptosis after treatment but showed no significant differences in functional assays. RANKL: OPG mRNA and protein ratios were decreased in the osteoblast lineage. Osteoclast lineage cells treated with sertraline demonstrated diminished TRAP positive cells when pre-exposed to sertraline prior to RANKL-induced differentiation. SIGNIFICANCE: These data suggest osteoclasts are a likely target of bone homeostasis disruption due to sertraline treatment, most potently through the osteoblast/clast feedback loop.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Inibidores de Captação de Serotonina/toxicidade , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Ligante RANK/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo
8.
Cell Prolif ; 53(5): e12810, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32472648

RESUMO

OBJECTIVES: Gli1+ cells have received extensive attention in tissue homeostasis and injury mobilization. The aim of this study was to investigate whether Gli1+ cells respond to force and contribute to bone remodelling. MATERIALS AND METHODS: We established orthodontic tooth movement (OTM) model to assess the bone response for mechanical force. The transgenic mice were utilized to label and inhibit Gli1+ cells, respectively. Additionally, mice that conditional ablate Yes-associated protein (Yap) in Gli1+ cells were applied in the present study. The tooth movement and bone remodelling were analysed. RESULTS: We first found Gli1+ cells expressed in periodontal ligament (PDL). They were proliferated and differentiated into osteoblastic cells under tensile force. Next, both pharmacological and genetic Gli1 inhibition models were utilized to confirm that inhibition of Gli1+ cells led to arrest of bone remodelling. Furthermore, immunofluorescence staining identified classical mechanotransduction factor Yap expressed in Gli1+ cells and decreased after suppression of Gli1+ cells. Additionally, conditional ablation of Yap gene in Gli1+ cells inhibited the bone remodelling as well, suggesting Gli1+ cells are force-responsive cells. CONCLUSIONS: Our findings highlighted that Gli1+ cells in PDL directly respond to orthodontic force and further mediate bone remodelling, thus providing novel functional evidence in the mechanism of bone remodelling and first uncovering the mechanical responsive property of Gli1+ cells.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Diferenciação Celular/fisiologia , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Transgênicos , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Ligamento Periodontal/metabolismo , Ligamento Periodontal/fisiologia , Estresse Mecânico , Técnicas de Movimentação Dentária/métodos
9.
Life Sci ; 254: 117809, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428598

RESUMO

Bone remodeling is a complex and constant process, which is maintained by well-regulated communication among various cells. Extracellular vesicles (EVs) are small vesicles, which could provide a protective environment for the transportation of various functional molecules. It has been shown that EVs could dock with distant and/or neighboring target cells, deliver cargoes to these specific cells and alter their fates. MicroRNAs (miRNAs), single-stranded non-coding RNAs with 22-26 nucleotides, could bind to mRNAs and repress the translation or stimulate the degradation of mRNAs. It is reported that EVs could serve as the mail carriers, which could cargo miRNAs to exchange information between different cells and act through a novel way to regulate signaling pathways during bone remodeling. In this review, we summarize the function of EV-miRNAs in the communication among mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, osteocytes, and myoblasts during bone remodeling, as well as the key signaling molecules which are involved in this process. The roles of EV-miRNAs in sending intercellular messages in the microenvironment of bone remodeling could shed new light on the development of tissue engineering, and provide novel diagnostic markers and therapeutic targets of bone-related diseases.


Assuntos
Remodelação Óssea/fisiologia , Comunicação Celular/fisiologia , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Mioblastos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo
10.
Life Sci ; 253: 117636, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251631

RESUMO

BMAL1 is a core component of the circadian clock loop, which directs the sophisticated circadian expression of clock-controlled genes. Skeletal Bone development is a complex biological process involving intramembranous ossification, endochondral ossification and bone remodeling, as well as specific cells, such as mesenchymal cells, osteoblasts, osteoclasts, chondrocytes, etc. Growing evidences suggest that BMAL1 is indispensable for hard tissue development, including bone, cartilage and teeth. Loss of BMAL1 in animals can inhibit bone and cartilage development, and result in abnormal bone mass. In mesenchymal cells, BMAL1 defect inhibits osteoblastic and chondrocytic differentiation. Inactivation of BMAL1 also can promote the differentiation and formation of osteoclasts and increase bone resorption. Specifically, preclinical data demonstrate that the abnormity of BMAL1 expression is associated with skeletal disorders such as skeletal mandibular hypoplasia, osteoarthritis, osteoporosis, etc. In this review, we systemically describe the impact of BMAL1 in skeletal development and homeostasis, and devote to searching new therapy strategies for bone disorders.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Desenvolvimento Ósseo/efeitos dos fármacos , Fatores de Transcrição ARNTL/genética , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Relógios Circadianos/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Dente/metabolismo
11.
Int Endod J ; 53(8): 1111-1119, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32344454

RESUMO

AIM: To investigate the presence, localization and the possible correlation of the fibroblast growth factor receptor-2 (FGFR2) with inflammatory resorption of cementum, periodontal ligament and alveolar bone during development of apical periodontitis in mice. METHODOLOGY: Apical periodontitis was experimentally induced in mandibular first molars of mice by pulp exposure to the oral environment. Healthy teeth without pulp exposure were used as controls. At 7, 21 and 42 days following pulp exposure, the animals were euthanized and the jaws were prepared for analysis under conventional and fluorescence microscopy, immunohistochemistry (FGFR2), RT-PCR (RNAm levels of RANK, RANKL, OPG, Runx2 and cathepsin K) and enzyme histochemistry (cementoclasts and osteoclasts). Statistical analysis was performed by Kruskal-Wallis tests and Dunn's post hoc tests for multiple comparisons (α = 0.05) using SAS 9.4 software. RESULTS: FGFR2-positive cells were not observed in the tissues surrounding healthy teeth but were observed in teeth with periapical lesions from seven days after root canal contamination. At days 21 and 42 after endodontic infection, the increase in periapical lesion size was accompanied by significantly enhanced expression of FGFR2 (P < 0.0001), significantly increased intensity of inflammatory cells, number of osteoclasts (P < 0.0001) and cementoclasts (P < 0.0001), and significantly enhanced RNAm levels of RANK/RANKL/OPG, Runx2 and cathepsin K compared to day 0 (P < 0.0001). At 21 and 42 days, FGFR2 was also expressed on osteoblasts, fibroblasts and inside enlarged lacunae of cementocytes along with acute and chronic inflammatory cells (macrophages, plasma cells and neutrophils). At all periods and cells, FGFR2 expression was observed in the cell membrane and cytoplasm, but not in the nucleus. CONCLUSION: In mice, FGFR2 was not expressed in tissues surrounding healthy teeth but was expressed in apical periodontitis, specifically in the membrane and cytoplasm of osteoblasts, fibroblasts, lacunae of cementocytes, and acute and chronic inflammatory cells (macrophages, plasma cells and neutrophils). Its expression was correlated with the size of the periapical lesions.


Assuntos
Periodontite Periapical , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Cemento Dentário , Camundongos , Osteoclastos , Tratamento do Canal Radicular
12.
J Oral Sci ; 62(2): 212-216, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32161234

RESUMO

The morphogenesis of long bones is a multistep process that generates a variety of genetically defined forms. The tarsometatarsal (TMT) long bone morphology in birds develops through lateral fusion of three initially independent periosteal bone cylinders (BCs). Previous studies have clarified the histological details and chronology of the changes occurring during development. The present study investigated the temporospatial distribution of osteogenic and osteoclastic cells in the embryonic chicken using histochemistry for alkaline phosphatase and tartrate-resistant acid phosphatase, with particular reference to the radial growth of BCs and their subsequent fusion process. Osteogenic cells were localized preferentially in the periosteum of radially growing BCs, leaving open cancellous spaces in the BC wall. Osteoclasts observed later than embryonic day 10 were localized preferentially in the endosteal surface, and therefore the radial growth of BCs resulting from osteoblast activity was accompanied by endosteal resorption by osteoclasts, with progressive enlargement of the bone marrow spaces. During BC fusion, trabecular bridges were formed by periosteal osteogenic cells, with removal of the bone septum by endosteal osteoclasts. These findings suggest that fusion of BCs in the embryonic chicken is mediated by cellular events constituting ordinary long bone development, and not through a defined mechanism specific for fusion.


Assuntos
Galinhas , Osteoclastos , Animais , Osso e Ossos , Embrião de Galinha , Osteoblastos , Osteogênese
13.
Cell Prolif ; 53(4): e12789, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32157750

RESUMO

OBJECTIVES: Oestrogen is known to inhibit osteoclastogenesis, and numerous studies have identified it as an autophagic activator. To date, the role of oestrogen in the autophagy of osteoclast precursors (OCPs) during osteoclastogenesis remains unclear. This study aimed to determine the effect of autophagy regulated by the biologically active form of oestrogen (17ß-estradiol) on osteoclastogenesis. MATERIALS AND METHODS: After treatment with 17ß-estradiol in OCPs (from bone marrow-derived macrophages, BMMs) and ovariectomy (OVX) mice, we measured the effect of 17ß-estradiol on the autophagy of OCPs in vitro and in vivo. In addition, we studied the role of autophagy in the OCP proliferation, osteoclast differentiation and bone loss regulated by 17ß-estradiol using autophagic inhibitor or knock-down of autophagic genes. RESULTS: The results showed that direct administration of 17ß-estradiol enhanced the autophagic response of OCPs. Interestingly, 17ß-estradiol inhibited the stimulatory effect of receptor activator of nuclear factor-κB ligand (RANKL) on the autophagy and osteoclastogenesis of OCPs. Moreover, 17ß-estradiol inhibited the downstream signalling of RANKL. Autophagic suppression by pharmacological inhibitors or gene silencing enhanced the inhibitory effect of 17ß-estradiol on osteoclastogenesis. In vivo assays showed that the autophagic inhibitor 3-MA not only inhibited the autophagic activity of the OCPs in the trabecular bone of OVX mice but also enhanced the ability of 17ß-estradiol to ameliorate bone loss. CONCLUSIONS: In conclusion, our study showed that oestrogen directly enhanced the autophagy of OCPs, which inhibited its anti-osteoclastogenic effect. Drugs based on autophagic inhibition may enhance the efficacy of oestrogen on osteoporosis.


Assuntos
Autofagia/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Células Cultivadas , Estradiol/uso terapêutico , Estrogênios/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ligante RANK/metabolismo
14.
Zhongguo Gu Shang ; 33(1): 64-70, 2020 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-32115927

RESUMO

OBJECTIVE: To establish the in vitro study model of osteoclasts induced by RANKL, to elaborate the effect of formononetin (FO) , an effective component of Caulis Spatholobi, on the differentiation and function of bone marrow mononuclear macrophages (BMMs) into osteoclasts, and to explore the molecular mechanism of its inhibition. METHODS: The BMMs in femur and tibia were isolated from 20 clean C57/BL6 mice of 4 to 6 weeks old, 10 males and 10 females, each weighing (20± 2) g. The BMMs in femur and tibia were cultured and proliferated in vitro with α-MEM medium. BMMs were cultured with MCSF and different concentrations of anthocyanin (5 to 50 µm) respectively for 4 days, and CCK8 of cell proliferation and toxicity was detected. BMMs in good growth condition were added to M-CSF and RANKL to induce osteoclast differentiation in turn. There was no special treatment in the control group. DMSO was added to the control group with DMSO solvent. Each observation group was added with different concentrations of awnasin (1 to 20 µm) . After 6 days of culture, the osteoclasts were counted and statistically analyzed. The expression of NFATc1, c-Fos and ERK, the key transcription factors in osteoclast differentiation, were detected by Western blot, RNA was extracted at 4 days, and the activity of ctsk, trap, MMP9 and Car2 were detected by real time PCR. RESULTS: CCK8 test results showed that awnstein could inhibit the activity of BMMs in a dose-dependent manner, and had no significant toxic effect on the growth of bmms within the safe concentration range of ≤20 µM (P= 0.278>0.05) . The results of trap staining showed that awnstein could inhibit osteoclast production in a dose-dependent manner in the concentration range of (1 to 20 µM) , especially in 10 µM (P=0.000<0.05) . Western blot showed that 10 µ m could significantly inhibit the expression of NFATc1 and c-Fos, but not the expression of ERK. In terms of osteoclast function, the expression of ctsk (P=0.000<0.05) , trap (P=0.000<0.05) , MMP9 (P=0.000<0.05) and Car2 (P=0.000<0.05) related to osteoclast function were detected by real time PCR. CONCLUSION: The effective component of Caulis Spatholobi can inhibit the proliferation and differentiation of primary mononuclear macrophages into osteoclasts, and down regulate the expression of osteoclast bone resorption related proteins and genes, which may be one of the mechanisms of its prevention and treatment of bone destruction and collapse in osteonecrosis of femoral head.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Animais , Células da Medula Óssea , Feminino , Isoflavonas , Masculino , Camundongos , Osteoclastos , Ligante RANK
15.
Poult Sci ; 99(3): 1241-1253, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32111302

RESUMO

Genetic selection and intensive nutrition for increased growth rate in meat-type ducks has resulted in an imbalance between pectorales increment and sternal mass, which is detrimental to productivity and welfare. Reducing body weight and increasing sternal mass probably reverses these adverse effects. Therefore, 2 experiments (Expt.) were conducted to investigate the effects of 25-hydroxycholecalciferol (25-OH-D3), a vitamin D3 metabolites, on sternal mass. In Expt. 1, 512 1-day-old male ducks were randomly assigned to 4 low-nutrient density diets and received following treatments in a 2 × 2 factorial arrangement: (i) NRC or China Agricultural industry standards (NY/T) vitamin premixes and (ii) 0.069 mg/kg 25-HyD in feed or not. At 49 D of age, regardless of 25-OH-D3, NY/T vitamin regimen inhibited bone turnover and consequently increased sternal trabecular bone volume and mineral deposition compared with NRC vitamin premix. Supplementing 25-OH-D3 to NRC but not NY/T vitamin regimen significantly improved sternal microarchitecture and mineral content, which companied by decreased serum bone resorption markers concentration, as well as downregulation of the gene expressions of osteoclast differentiation and activity. In Expt. 2, 256 1-day-old male ducks were fed a standard nutrient density diet contained NRC vitamin premix with 0 or 0.069 mg/kg of 25-OH-D3. Results also showed that 25-OH-D3 treatment significantly improved sternal mineral accumulation and microarchitecture, along with decreasing osteoblast and osteoclast numbers in bone surface, declining serum bone turnover markers levels, and increasing serum Ca concentration. Collectively, these findings indicated that the dietary administration of 25-OH-D3 increased sternal mass in NRC vitamin diet by suppressing bone resorption in 49-day-old meat duck.


Assuntos
Conservadores da Densidade Óssea/metabolismo , Calcifediol/metabolismo , Patos/fisiologia , Esterno/fisiologia , Vitaminas/metabolismo , Ração Animal/análise , Animais , Conservadores da Densidade Óssea/administração & dosagem , Calcifediol/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Masculino , Tamanho do Órgão , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Distribuição Aleatória
16.
Nat Commun ; 11(1): 1578, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221289

RESUMO

PARP1 and PARP2 dual inhibitors, such as olaparib, have been recently FDA approved for the treatment of advanced breast and ovarian cancers. However, their effects on bone mass and bone metastasis are unknown. Here we show that olaparib increases breast cancer bone metastasis through PARP2, but not PARP1, specifically in the myeloid lineage, but not in the cancer cells. Olaparib treatment or PARP1/2 deletion promotes osteoclast differentiation and bone loss. Intriguingly, myeloid deletion of PARP2, but not PARP1, increases the population of immature myeloid cells in bone marrow, and impairs the expression of chemokines such as CCL3 through enhancing the transcriptional repression by ß-catenin. Compromised CCL3 production in turn creates an immune-suppressive milieu by altering T cell subpopulations. Our findings warrant careful examination of current PARP inhibitors on bone metastasis and bone loss, and suggest cotreatment with CCL3, ß-catenin inhibitors, anti-RANKL or bisphosphonates as potential combination therapy for PARP inhibitors.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Reabsorção Óssea/patologia , Neoplasias da Mama/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CCL3/deficiência , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Feminino , Deleção de Genes , Humanos , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Poli(ADP-Ribose) Polimerases/deficiência , Regiões Promotoras Genéticas/genética , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Transcrição Genética/efeitos dos fármacos , beta Catenina/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 40(4): 885-900, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32160774

RESUMO

Aortic valve stenosis is the most prevalent heart valve disease worldwide. Although interventional treatment options have rapidly improved in recent years, symptomatic aortic valve stenosis is still associated with high morbidity and mortality. Calcific aortic valve stenosis is characterized by a progressive fibro-calcific remodeling and thickening of the aortic valve cusps, which subsequently leads to valve obstruction. The underlying pathophysiology is complex and involves endothelial dysfunction, immune cell infiltration, myofibroblastic and osteoblastic differentiation, and, subsequently, calcification. To date, no pharmacotherapy has been established to prevent aortic valve calcification. However, novel promising therapeutic targets have been recently identified. This review summarizes the current knowledge of pathomechanisms involved in aortic valve calcification and points out novel treatment strategies.


Assuntos
Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/fisiopatologia , Animais , Estenose da Valva Aórtica/patologia , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/fisiopatologia , Lipoproteínas/metabolismo , Miofibroblastos/fisiologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , RNA não Traduzido/metabolismo , Calcificação Vascular/fisiopatologia
18.
Braz Oral Res ; 34: e012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32049112

RESUMO

Lipoproteins are important bacterial immunostimulating molecules capable of inducing receptor activator of nuclear factor-κB (RANKL) and osteoclast formation in vitro and in vivo . Although these molecules are present in periodontopathogenic bacteria, their role in periodontitis is not known. In this study, we used Pam2CSK4 (PAM2), a synthetic molecule that mimics bacterial lipoprotein, to investigate the effects of lipoproteins on periodontitis in mice. C57BL/6 male mice were randomly divided into three experimental groups: 1) Negative control group: animals received vehicle injection; 2) Positive control group: animals received injection of Escherichia coli lipopolysaccharide (LPS); 3) PAM2 group: animals received PAM2 injection. All the injections were performed bilaterally every other day into the palatal mucosa between first and second molars. After twenty-four days, the animals were euthanized to assess alveolar bone volume (micro-CT), cellular and extracellular composition in the gingiva (stereometric analysis), and osteoclast numbers (TRAP staining). Treatment with either PAM2 or LPS induced gingival inflammation, as demonstrated by increased infiltration of inflammatory cells and enhanced angiogenesis, associated with a smaller number of fibroblasts and decreased extracellular matrix. Importantly, treatment not only with LPS but also with PAM2 resulted in a larger number of TRAP+ multinucleated osteoclasts and significant loss of alveolar bone. Collectively, our data demonstrate that PAM2 can induce gingival inflammation and bone loss in mice, broadening the avenues of investigation into the role of lipoproteins in the pathogenesis of periodontal disease.


Assuntos
Lipopeptídeos/farmacologia , Periodontite/etiologia , Periodontite/patologia , Receptor 2 Toll-Like/antagonistas & inibidores , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Processo Alveolar/efeitos dos fármacos , Processo Alveolar/patologia , Animais , Modelos Animais de Doenças , Gengiva/efeitos dos fármacos , Gengiva/patologia , Gengivite/etiologia , Gengivite/patologia , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Periodontite/microbiologia , Distribuição Aleatória , Fosfatase Ácida Resistente a Tartarato , Fatores de Tempo , Microtomografia por Raio-X
19.
Medicine (Baltimore) ; 99(8): e19120, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32080087

RESUMO

Osteoporosis (OP) is a disease characterized by bone mass loss, bone microstructure damage, increased bone fragility, and easy fracture. The molecular mechanism underlying OP remains unclear.In this study, we identified 217 genes associated with OP, and formed a gene set [OP-related genes gene set (OPgset)].The highly enriched GOs and pathways showed OPgset genes were significantly involved in multiple biological processes (skeletal system development, ossification, and osteoblast differentiation), and several OP-related pathways (Wnt signaling pathway, osteoclast differentiation, steroid hormone biosynthesis, and adipocytokine signaling pathway). Besides, pathway crosstalk analysis indicated three major modules, with first module consisted of pathways mainly involved in bone development-related signaling pathways, second module in Wnt-related signaling pathway and third module in metabolic pathways. Further, we calculated degree centrality of a node and selected ten key genes/proteins, including TGFB1, IL6, WNT3A, TNF, PTH, TP53, WNT1, IGF1, IL10, and SERPINE1. We analyze the K-core and construct three k-core sub-networks of OPgset genes.In summary, we for the first time explored the molecular mechanism underlying OP via network- and pathway-based methods, results from our study will improve our understanding of the pathogenesis of OP. In addition, these methods performed in this study can be used to explore pathogenesis and genes related to a specific disease.


Assuntos
Osso e Ossos/patologia , Fraturas Ósseas/etiologia , Osteoporose/genética , Adipocinas/genética , Densidade Óssea/genética , Osso e Ossos/metabolismo , Osso e Ossos/ultraestrutura , Diferenciação Celular/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese/genética , Osteoporose/complicações , Osteoporose/epidemiologia , Prevalência , Via de Sinalização Wnt/genética
20.
Scand J Immunol ; 91(5): e12874, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32090353

RESUMO

The immune and skeletal systems share common mechanisms, and the crosstalk between the two has been termed osteoimmunology. Osteoimmunology mainly focuses on diseases between the immune and bone systems including bone loss diseases, and imbalances in osteoimmune regulation affect skeletal homeostasis between osteoclasts and osteoblasts. The immune mediator interleukin-20 (IL-20), a member of the IL-10 family, enhances inflammation, chemotaxis and angiogenesis in diseases related to bone loss. However, it is unclear how IL-20 regulates the balance between osteoclastogenesis and osteoblastogenesis; therefore, we explored the mechanisms by which IL-20 affects bone mesenchymal stem cells (BMSCs) in osteoclastogenesis in primary cells during differentiation, proliferation, apoptosis and signalling. We initially found that IL-20 differentially regulated preosteoclast proliferation and apoptosis; BMSC-conditioned medium (CM) significantly enhanced osteoclast formation and bone resorption, which was dose-dependently regulated by IL-20; IL-20 inhibited OPG expression and promoted M-CSF, RANKL and RANKL/OPG expression; and IL-20 differentially regulated the expression of osteoclast-specific gene and transcription factors through the OPG/RANKL/RANK axis and the NF-kB, MAPK and AKT pathways. Therefore, IL-20 differentially regulates BMSCs in osteoclastogenesis and exerts its function by activating the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT pathways, which make targeting IL-20 a promising direction for targeted regulation in diseases related to bone loss.


Assuntos
Interleucinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoprotegerina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA