Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
Mais filtros










Filtros aplicados

Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 17(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288466

RESUMO

In this study, a low molecular-weight (Mw) peptide named NJP (<1 kDa), was purified from a protein hydrolysate of Nibea japonica by ultrafiltration, and its immunomodulatory effect on RAW264.7 cells was evaluated. The lactate dehydrogenase (LDH) and MTT assays were performed to explore the cytotoxicity of NJP. The results showed that NJP promoted cell proliferation and had no significant toxic effects on RAW264.7 cells. Moreover, the cells formed multiple pseudopodia indicating that they were in activated state. Further tests showed that NJP significantly promoted phagocytic capacity, and the secretion of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß). It also increased the synthesis of nitric oxide (NO) by upregulating inducible nitric oxide synthase (iNOS) protein level. Flow cytometry revealed that NJP promoted cell cycle progression and increased the percentage of cells in G0/G1 phase. NJP promoted IκBα degradation, p65 and nuclear factor (NF)-κB activation and translocation by up-regulating IKKα/ß protein expression. In conclusion, these results indicated that NJP exerts immunomodulatory effects on RAW264.7 cells through the NF-κB signaling pathway. Therefore, NJP can be incorporated in the production of functional foods or nutraceuticals.


Assuntos
Cordados/metabolismo , Fatores Imunológicos/farmacologia , NF-kappa B/metabolismo , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/metabolismo , Camundongos , Peso Molecular , Fagócitos/efeitos dos fármacos , Hidrolisados de Proteína/farmacologia , Células RAW 264.7 , Regulação para Cima/efeitos dos fármacos
2.
Cells ; 8(5)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100928

RESUMO

Vav proteins play roles as guanosine nucleotide exchange factors for Rho GTPases and signaling adaptors downstream of protein tyrosine kinases. The recent sequencing of the genomes of many species has revealed that this protein family originated in choanozoans, a group of unicellular organisms from which animal metazoans are believed to have originated from. Since then, the Vav family underwent expansions and reductions in its members during the evolutionary transitions that originated the agnates, chondrichthyes, some teleost fish, and some neoaves. Exotic members of the family harboring atypical structural domains can be also found in some invertebrate species. In this review, we will provide a phylogenetic perspective of the evolution of the Vav family. We will also pay attention to the structure, signaling properties, regulatory layers, and functions of Vav proteins in both invertebrate and vertebrate species.


Assuntos
Evolução Molecular , Filogenia , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Animais , Coanoflagelados/metabolismo , Cordados/metabolismo , Humanos , Estrutura Molecular , Fosforilação , Proteínas Proto-Oncogênicas c-vav/química , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo
3.
Cell Mol Life Sci ; 76(20): 4117-4130, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31028425

RESUMO

Intracellular traffic amongst organelles represents a key feature for eukaryotes and is orchestrated principally by members of Rab family, the largest within Ras superfamily. Given that variations in Rab repertoire have been fundamental in animal diversification, we provided the most exhaustive survey regarding the Rab toolkit of chordates. Our findings reveal the existence of 42 metazoan conserved subfamilies exhibiting a univocal intron/exon structure preserved from cnidarians to vertebrates. Since the current view does not capture the Rab complexity, we propose a new Rab family classification in three distinct monophyletic clades. The Rab complement of chordates shows a dramatic diversification due to genome duplications and independent gene duplications and losses with sharp differences amongst cephalochordates, tunicates and gnathostome vertebrates. Strikingly, the analysis of the domain architecture of this family highlighted the existence of chimeric calcium-binding Rabs, which are animal novelties characterized by a complex evolutionary history in gnathostomes and whose role in cellular metabolism is obscure. This work provides novel insights in the knowledge of Rab family: our hypothesis is that chordates represent a hotspot of Rab variability, with many events of gene gains and losses impacting intracellular traffic capabilities. Our results help to elucidate the role of Rab members in the transport amongst endomembranes and shed light on intracellular traffic routes in vertebrates. Then, since the predominant role of Rabs in the molecular communication between different cellular districts, this study paves to way to comprehend inherited or acquired human disorders provoked by dysfunctions in Rab genes.


Assuntos
Evolução Biológica , Cordados/genética , Genoma , Família Multigênica , Filogenia , Proteínas rab de Ligação ao GTP/genética , Animais , Transporte Biológico , Cordados/classificação , Bases de Dados Genéticas , Éxons , Duplicação Gênica , Variação Genética , Humanos , Íntrons , Organelas/genética , Organelas/metabolismo , Domínios Proteicos , Sintenia , Proteínas rab de Ligação ao GTP/classificação , Proteínas rab de Ligação ao GTP/metabolismo
4.
Nanomedicine (Lond) ; 14(7): 871-887, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30895865

RESUMO

AIM: To provide multilayered combination therapies encompassing nanoparticles and organic peptides and to assess their efficacy in the treatment of arthritis. MATERIALS & METHODS: Fish oil protein (FP) was isolated from fish oil glands and tagged with spherical gold nanoparticles (GNPs). Tagged GNPs were encapsulated in DPPC liposomes (FP-GNP-DPPC) and characterized. RESULTS & CONCLUSION: FP increased the hydrophilicity of GNP, while encapsulation of FP-GNP within liposomes increased the hydrophobicity. In vitro release studies of FP-GNP-DPPC exhibited sustained release of FP in simulated synovial fluid. FP-GNP-DPPC injected into intra-articular joints of rats displayed anti-osteoarthritic effects in osteoarthritic rat model. This is the first study to report the anti-osteoarthritic activity of FP and DPPC encapsulated FP-GNP liposomes.


Assuntos
Óleos de Peixe/química , Ouro/química , Articulações/efeitos dos fármacos , Nanopartículas Metálicas/química , Osteoartrite/tratamento farmacológico , Proteínas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cordados , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Tamanho da Partícula , Fosfolipídeos/química , Proteínas/farmacologia , Ratos Wistar , Propriedades de Superfície
5.
Int J Mol Sci ; 20(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871218

RESUMO

The ideal therapeutic uricase (UOX) is expected to have the following properties; high expression level, high activity, high thermostability, high solubility and low immunogenicity. The latter property is believed to depend largely on sequence identity to the deduced human UOX (dH-UOX). Herein, we explored L. menadoensis uricase (LM-UOX) and found that it has 65% sequence identity to dH-UOX, 68% to the therapeutic chimeric porcine-baboon UOX (PBC) and 70% to the resurrected ancient mammal UOX. To study its biochemical properties, recombinant LM-UOX was produced in E. coli and purified to more than 95% homogeneity. The enzyme had specific activity up to 10.45 unit/mg, which was about 2-fold higher than that of the PBC. One-litre culture yielded purified protein up to 132 mg. Based on homology modelling, we successfully engineered I27C/N289C mutant, which was proven to contain inter-subunit disulphide bridges. The mutant had similar specific activity and production yield to that of wild type (WT) but its thermostability was dramatically improved. Up on storage at -20 °C and 4 °C, the mutant retained ~100% activity for at least 60 days. By keeping at 37 °C, the mutant retained ~100% activity for 15 days, which was 120-fold longer than that of the wild type. Thus, the I27C/N289C mutant has potential to be developed for treatment of hyperuricemia.


Assuntos
Cordados/genética , Proteínas Recombinantes/genética , Urato Oxidase/genética , Sequência de Aminoácidos , Animais , Hiperuricemia/genética , Indonésia , Engenharia de Proteínas/métodos , Alinhamento de Sequência
6.
BMC Evol Biol ; 19(1): 27, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654737

RESUMO

BACKGROUND: The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce. RESULTS: Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)-and three-LU domain containing genes in general-occurred later in evolution and was first detectable after coelacanths. CONCLUSIONS: This study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members-hitherto unknown in mammals-provide new perspectives on the evolution of this important enzyme system.


Assuntos
Cordados/genética , Variação Genética , Filogenia , Plasminogênio/genética , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Humanos , Funções Verossimilhança , Inibidor 1 de Ativador de Plasminogênio/química , Domínios Proteicos , Análise de Sequência de RNA , Transcriptoma/genética , Ativador de Plasminogênio Tipo Uroquinase/química , Vitronectina/química
7.
Curr Opin Neurobiol ; 56: 97-105, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30665084

RESUMO

How do post-mitotic neurons acquire and maintain their terminal identity? Genetic mutant analysis in the nematode Caenorhabditis elegans has revealed common molecular programs that control neuronal identity. Neuron type-specific combinations of transcription factors, called terminal selectors, act as master regulatory factors to initiate and maintain terminal identity programs through direct regulation of neuron type-specific effector genes. We will provide here an update on recent studies that solidify the terminal selector concept in worms, flies and chordates. We will also describe how the terminal selector concept has been expanded by recent work in C. elegans to explain neuronal subtype diversification and plasticity of neuronal identity.


Assuntos
Cordados , Dípteros , Animais , Proteínas de Caenorhabditis elegans , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Neurônios
8.
Mol Biol Evol ; 36(4): 643-649, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690573

RESUMO

Resolving the relationships of animals (Metazoa) is crucial to our understanding of the origin of key traits such as muscles, guts, and nerves. However, a broadly accepted metazoan consensus phylogeny has yet to emerge. In part, this is because the genomes of deeply diverging and fast-evolving lineages may undergo significant gene turnover, reducing the number of orthologs shared with related phyla. This can limit the usefulness of traditional phylogenetic methods that rely on alignments of orthologous sequences. Phylogenetic analysis of gene content has the potential to circumvent this orthology requirement, with binary presence/absence of homologous gene families representing a source of phylogenetically informative characters. Applying binary substitution models to the gene content of 26 complete animal genomes, we demonstrate that patterns of gene conservation differ markedly depending on whether gene families are defined by orthology or homology, that is, whether paralogs are excluded or included. We conclude that the placement of some deeply diverging lineages may exceed the limit of resolution afforded by the current methods based on comparisons of orthologous protein sequences, and novel approaches are required to fully capture the evolutionary signal from genes within genomes.


Assuntos
Cordados/genética , Genoma , Invertebrados/genética , Família Multigênica , Filogenia , Animais , Técnicas Genéticas , Humanos
9.
Mol Biol Evol ; 36(3): 621-631, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517749

RESUMO

Identification of orthologous or paralogous relationships of coding genes is fundamental to all aspects of comparative genomics. For accurate identification of orthologs among deeply diversified bilaterian lineages, precise estimation of gene trees is indispensable, given the complicated histories of genes over millions of years. By estimating gene trees, orthologs can be identified as members of an orthogroup, a set of genes descended from a single gene in the last common ancestor of all the species being considered. In addition to comparisons with a given species tree, purposeful taxonomic sampling increases the accuracy of gene tree estimation and orthogroup identification. Although some major phylogenetic relationships of bilaterians are gradually being unraveled, the scattering of published genomic data among separate web databases is becoming a significant hindrance to identification of orthogroups with appropriate taxonomic sampling. By integrating more than 250 metazoan gene models predicted in genome projects, we developed a web tool called ORTHOSCOPE to identify orthogroups of specific protein-coding genes within major bilaterian lineages. ORTHOSCOPE allows users to employ several sequences of a specific molecule and broadly accepted nodes included in a user-specified species tree as queries and to evaluate the reliability of estimated orthogroups based on topologies and node support values of estimated gene trees. A test analysis using data from 36 bilaterians was accomplished within 140 s. ORTHOSCOPE results can be used to evaluate orthologs identified by other stand-alone programs using genome-scale data. ORTHOSCOPE is freely available at https://www.orthoscope.jp or https://github.com/jun-inoue/orthoscope (last accessed December 28, 2018).


Assuntos
Cordados/genética , Técnicas Genéticas , Filogenia , Software , Animais
10.
Mol Biol Evol ; 36(2): 376-392, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517755

RESUMO

Activation of Rho-associated protein kinase 1 (ROCK1) and myotonic dystrophy kinase-related CDC42-binding kinase alpha (MRCKα) by caspases during apoptosis in vertebrates represents a prototypical example of co-option of kinases by proteases. How caspases acquired the ability to control these proteins during evolution of vertebrates is still unknown. Here, we report a phylogenetic and molecular study on the acquisition of caspase-cleavage sites in the family of Rho-activated kinases (RaKs). We demonstrate that the acquisition of such sites has more frequently occurred in identifiable intrinsically disordered regions (IDRs) within or flanking the coiled-coil domain. Thanks to computational identification of IDRs in protein sequences of different organisms, we predicted and validated the independent evolution of two caspase-cleavage sites in ROCK of arthropods and the loss of one of the MRCKα caspase-cleavage sites in ray-finned fishes. In conclusion, we shed light on the propensity of RaKs to evolve novel proteolytic sites, causing kinase activation and uniform subcellular distribution.


Assuntos
Artrópodes/genética , Cordados/genética , Evolução Molecular , Quinases Associadas a rho/genética , Sequência de Aminoácidos , Animais , Domínio Catalítico , Filogenia , Domínios Proteicos/genética , Proteólise
11.
Dev Biol ; 445(1): 8-15, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412702

RESUMO

Hemichordates are a phylum of marine invertebrate deuterostomes that are closely related to chordates, and represent one of the most promising models to provide insights into early deuterostome evolution. The genome of the hemichordate, Saccoglossus kowalevskii, reveals an extensive set of non-coding elements conserved across all three deuterostome phyla. Functional characterization and cross-phyla comparisons of these putative regulatory elements will enable a better understanding of enhancer evolution, and subsequently how changes in gene regulation give rise to morphological innovation. Here, we describe an efficient method of transgenesis for the characterization of non-coding elements in S. kowalevskii. We first test the capacity of an I-SceI transgenesis system to drive ubiquitous or regionalized gene expression, and to label specific cell types. Finally, we identified a minimal promoter that can be used to test the capacity of putative enhancers in S. kowalevskii. This work demonstrates that this I-SceI transgenesis technique, when coupled with an understanding of chromatin accessibility, can be a powerful tool for studying how evolutionary changes in gene regulatory mechanisms contributed to the diversification of body plans in deuterostomes.


Assuntos
Animais Geneticamente Modificados/genética , Técnicas de Transferência de Genes/instrumentação , Poliquetos/genética , Animais , Evolução Biológica , Cordados/genética , Cordados não Vertebrados/genética , Evolução Molecular , Técnicas de Transferência de Genes/veterinária , Genoma , Invertebrados
12.
Dev Biol ; 448(2): 154-160, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30521810

RESUMO

Eggs have developed their own strategies for early development. Amphibian, teleost fish, and ascidian eggs show cortical rotation and an accompanying structure, a cortical parallel microtubule (MT) array, during the one-cell embryonic stage. Cortical rotation is thought to relocate maternal deposits to a certain compartment of the egg and to polarize the embryo. The common features and differences among chordate eggs as well as localized maternal proteins and mRNAs that are related to the organization of MT structures are described in this review. Furthermore, recent studies report progress in elucidating the molecular nature and functions of the noncentrosomal MT organizing center (ncMTOC). The parallel array of MT bundles is presumably organized by ncMTOCs; therefore, the mechanism of ncMTOC control is likely inevitable for these species. Thus, the molecules related to the ncMTOC provide clues for understanding the mechanisms of early developmental systems, which ultimately determine the embryonic axis.


Assuntos
Cordados/metabolismo , Microtúbulos/metabolismo , Zigoto/metabolismo , Animais , Transporte Biológico , Centrossomo/metabolismo , Cordados/embriologia , Desenvolvimento Embrionário
13.
Dev Biol ; 448(2): 260-270, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217598

RESUMO

Locomotion by tail beating powered by a system of bilateral paraxial muscle and notochord is likely one of the key evolutionary innovations that facilitated the origin and radiation of chordates. The innovation of paraxial muscle was accompanied by gene duplications in stem chordates that gave rise to muscular actins from cytoplasmic ancestral forms, which acquired contractile capability thanks to the recruitment of the myosin motor-machinery. To better understand the role of actin diversification during the evolution of chordates, in this work we have characterized the complete actin catalogue of the appendicularian Oikopleura dioica, an urochordate that maintains a chordate body plan throughout its life, including the notochord in a muscled tail that confers an active free-living pelagic style. Our genomic survey, phylogenetic analyses and Diagnostic-Actin-Values (DAVs) reveal that O. dioica has four muscular actins (ActnM1-4) and three cytoplasmic actins (ActnC1-3), most of which originated by independent gene duplications during the evolution of the appendicularian lineage. Detailed developmental expression atlas of the complete actin catalogue of O. dioica reveals differences in the temporal-regulation and tissue-specificity of different actin paralogs, suggesting complex processes of subfunctionalization during the evolution of urochordates. Our results suggest the presence of a "cardio-paraxial" muscular actin at least in the last common ancestor of Olfactores (i.e. vertebrates+urochordates). Our results reveal highly dynamic tissue-specific expression patterns for some cytoplasmic actins, including the notochord, ciliated cells and neurons with axonal projections, which challenge the classic housekeeping notion ascribed to these genes. Considering that previous work had demonstrated the existence of notochord-specific actins in cephalochordates, the tissue-specific expression of two cytoplasmic actins in the notochord of O. dioica suggests that this pattern plausibly reflects the ancestral condition of chordates, and provides new insights to better understand the evolutionary origin of the notochord.


Assuntos
Actinas/metabolismo , Cordados/embriologia , Coração/embriologia , Modelos Biológicos , Músculos/metabolismo , Notocorda/embriologia , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animais , Cordados/genética , Desenvolvimento Embrionário/genética , Evolução Molecular , Notocorda/metabolismo
14.
Dev Biol ; 448(2): 342-352, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30563648

RESUMO

During metamorphosis of solitary ascidians, part of the larval tubular nervous system is recruited to form the adult central nervous system (CNS) through neural stem-like cells called ependymal cells. The anteroposterior (AP) gene expression patterning of the larval CNS regionalize the distribution of the ependymal cells, which contains the positional information of the neurons of the adult nervous system. In colonial ascidians, the CNS of asexually developed zooids has the same morphology of the one of the post-metamorphic zooids. However, its development follows a completely different organogenesis that lacks embryogenesis, a larval phase and metamorphosis. In order to describe neurogenesis during asexual development (blastogenesis), we followed the expression of six CNS AP patterning genes conserved in chordates and five neural-related genes to determine neural cell identity in Botryllus schlosseri. We observed that a neurogenesis occurs de novo on each blastogenic cycle starting from a neurogenic transitory structure, the dorsal tube. The dorsal tube partially co-opts the AP patterning of the larval CNS markers, and potentially combine the neurogenesis role and provider of positional clues for neuron patterning. This study shows how a larval developmental module is reused in a direct asexual development in order to generate the same structures.


Assuntos
Padronização Corporal/genética , Cordados/crescimento & desenvolvimento , Cordados/genética , Neurogênese/genética , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética
15.
Dev Biol ; 448(2): 101-110, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579696

RESUMO

Non-coding regions with dozens to several hundred base pairs of extreme conservation have been found in all metazoan genomes. The distribution of these conserved non-coding elements (CNE) within and across genomes has suggested that many of them may have roles as transcriptional regulatory elements. A combination of bioinformatics and experimental approaches can be used to identify CNEs with regulatory activity in phylogenetically distant species. Nevertheless, the high divergent rate of genomic sequences of several organisms, such as tunicates, complicates the characterization of these conserved elements and very few examples really may prove their functional activity. We used a comparative approach to facilitate the identification of CNEs among distantly related or highly divergent species and experimentally demonstrated the functional significance of these novel CNEs. We first experimentally tested, in C. robusta and D. rerio transgenic embryos, the regulatory activity of conserved elements associated to genes involved in developmental control among different chordates (Homo sapiens and Danio rerio for vertebrates, Ciona robusta and Ciona savignyi for tunicates and Branchiostoma floridae for cephalochordates). Once demonstrated the cross-species functional conservation of these CNEs, the same gene loci were used as references to locate homologous regions and possible CNEs in available tunicate genomes. Comparison of tunicate-specific and chordate-specific CNEs revealed absence of conservation of the regulatory elements in spite of conservation of regulatory patterns, likely due to evolutionary specification of the respective developmental networks. This result highlights the importance of an integrative in-silico/in-vivo approach to CNEs investigation, encompassing both bioinformatics, essential for putative CNEs identification, and laboratory experiments, pivotal for the understanding of CNEs functionality.


Assuntos
Cordados/genética , Sequência Conservada/genética , DNA Intergênico/genética , Urocordados/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Especificidade da Espécie
16.
PLoS One ; 13(12): e0207887, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540765

RESUMO

A new deep-water catshark, Bythaelurus stewarti, is described based on 121 examined specimens caught on the Error Seamount (Mount Error Guyot) in the northwestern Indian Ocean. The new species differs from all congeners in the restricted distribution, a higher spiral valve turn count and in the morphology of the dermal denticles. It is distinguished from its morphologically and geographically closest congener, B. hispidus (Alcock), by the larger size (maximum size 44 vs. 39 cm TL, maturity size of males 35-39 vs. 21-28 cm TL), darker fresh coloration and dark grayish-brown mottling of the ventral head (vs. ventral head typically uniformly yellowish or whitish). Furthermore, it has a strongly different morphology of dermal denticles, in particular smaller and less elongate branchial, trunk and lateral caudal denticles that are set much less densely and have a surface that is very strongly and fully structured by reticulations (vs. structured by reticulations only in basal fourth). In addition, the new species differs from B. hispidus in having more slender claspers that are gradually narrowing to the bluntly pointed tip without knob-like apex (vs. claspers broader and with distinct knob-like apex), more spiral valve turns (11-12 vs. 8-10) and numerous statistical differences in morphometrics. A review of and a key to the species of Bythaelurus are given.


Assuntos
Tubarões/classificação , Especificidade da Espécie , Squalus/classificação , Distribuição Animal , Animais , Biometria , Cordados , Ecologia , Comportamento Alimentar , Feminino , Especiação Genética , Cabeça , Oceano Índico , Masculino , Pigmentação , Pele , Tronco
17.
Zootaxa ; 4526(1): 1-28, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486087

RESUMO

The understudied deep-sea benthic communities from the Southwestern Atlantic continental slope (200 m-3000 m depth) were sampled on August 2012 in an area located around 38°S that included the Mar del Plata submarine canyon. In these samplings we found a total of 16 ascidian species from six different families, of which two corresponded to new species. These were: Aplidium meridianum (Sluiter, 1906); Aplidium variabile (Herdman, 1886); Aplidium marplatensis Maggioni Tatián (sp. nov. present work); Aplidium solitarium Maggioni Tatián (sp. nov. present work); Synoicum georgianum Sluiter, 1932; Synoicum molle (Herdman, 1886); Synoicum sp.; Polysyncraton trivolutum (Millar, 1960); Sycozoa umbellata (Michaelsen, 1898); Ascidia meridionalis Herdman, 1880; Cnemidocarpa drygalskii (Hartmeyer, 1911); Styela squamosa Herdman, 1881; Pyura pilosa Monniot C. Monniot F., 1974; Molgula pyriformis Herdman, 1881; Molgula setigera Ärnbäck-Christie-Linde, 1938 and Asajirus indicus (Oka, 1913). Based on morphological evidence, we propose the new synonymy: Molgula setigera Ärnbäck-Christie-Linde, 1938 = Molgula marioni Millar, 1960 = Molgula robini Monniot C. Monniot F., 1983. We also propose to maintain Molgula pyriformis and Molgula malvinensis as separate species. We report: the extension of the distribution range of Aplidium meridianum, Synoicum georgianum, Polysyncraton trivolutum, Sycozoa umbellata, Cnemidocarpa drygalskii, Pyura pilosa and Molgula setigera, being the first time they are collected off La Plata River; the deepest registers for Synoicum georgianum, Poylsyncraton trivolutum, Sycozoa umbellata, Ascidia meridionalis, Pyura pilosa, Molgula pyriformis and Molgula setigera; and the shallowest register for Synoicum molle.


Assuntos
Cordados , Urocordados , Animais
18.
Dev Dyn ; 247(12): 1297-1307, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394653

RESUMO

BACKGROUND: Echinoderms and hemichordates are sister taxa that both have larvae with tripartite coeloms. Hemichordates inherit the coelom plan and ectoderm from larvae, whereas echinoderms form the adult rudiment comprising rearranged coeloms and a vestibule that then develops into adult oral ectoderm. Molecular networks that control patterns of the ectoderm and the central nervous system along the anteroposterior (AP) axis are highly conserved between hemichordates and chordates, respectively. In echinoderms, however, little is known about the AP registry in the ectoderm. RESULTS: We isolated ectodermal AP map genes from the sand dollar Peronella japonica and examined their expression. Comparative expression analyses showed that (1) P. japonica orthologs of hemichordate anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis; (2) P. japonica orthologs of the medial markers are expressed in the ambulacral ectoderm of the rudiment; and (3) few P. japonica orthologs of the posterior markers are expressed in ectoderm. CONCLUSIONS: We suggest that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates. The ectodermal AP registry provides insights into the AP axis and evolutionary processes of echinoderms from a common ambulacrarian ancestor. Developmental Dynamics 247:1297-1307, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Padronização Corporal , Cordados/embriologia , Ectoderma/embriologia , Desenvolvimento Embrionário , Larva/citologia , Animais , Embrião não Mamífero , Metamorfose Biológica , Ouriços-do-Mar
19.
PLoS One ; 13(11): e0207395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30419073

RESUMO

Lipids are key compounds in marine ecosystems being involved in organism growth, reproduction, and survival. Despite their biological significance and ease of measurement, the use of lipids in deep-sea studies is limited, as is our understanding of energy and nutrient flows in the deep ocean. Here, a comprehensive analysis of total lipid content, and lipid class and fatty acid composition, was used to explore functional diversity and nutritional content within a deep-sea faunal assemblage comprising 139 species from 8 phyla, including the Chordata, Arthropoda, and Cnidaria. A wide range of total lipid content and lipid class composition suggested a diversified set of energy allocation strategies across taxa. Overall, phospholipid was the dominant lipid class. While triacylglycerol was present in most taxa as the main form of energy storage, a few crustaceans, fish, jellyfishes, and corals had higher levels of wax esters/steryl esters instead. Type and amount of energy reserves may reflect dietary sources and environmental conditions for certain deep-sea taxa. Conversely, the composition of fatty acids was less diverse than that of lipid class composition, and large proportions of unsaturated fatty acids were detected, consistent with the growing literature on cold-water species. In addition, levels of unsaturation increased with depth, likely suggesting an adaptive strategy to maintain normal membrane structure and function in species found in deeper waters. Although proportions of n-3 fatty acids were high across all phyla, representatives of the Chordata and Arthropoda were the main reservoirs of these essential nutrients, thus suggesting health benefits to their consumers.


Assuntos
Organismos Aquáticos/metabolismo , Artrópodes/metabolismo , Cordados/metabolismo , Cnidários/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Triglicerídeos/metabolismo , Animais , Biodiversidade , Ácidos Graxos Ômega-3/classificação , Triglicerídeos/classificação
20.
Mol Biol Rep ; 45(6): 2213-2225, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30386972

RESUMO

Lateolabrax japonicus is an abundant marine aquatic fish species that is commonly cultured in East Asia due to its high commercial value. In this study, RNA-Seq analysis of L. japonicus was carried out to identify reproduction- and growth-related genes expressed in L. japonicus ovaries at different ages using Illumina sequencing technology. In total, 334,388,688 high-quality reads were obtained in four libraries, i.e., 4-year-old ovaries (4th_Ovary), 3-year-old ovaries (3rd_Ovary), 2-year-old ovaries (2nd_Ovary), and 1-year-old ovaries (1st_Ovary). The reads were then de novo assembled into 101,860 unigenes with an average unigene length of 879 bp. In total, 30,142 unigenes (29.59%) were annotated in public databases, including Nr database (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of proteins (COG), based on sequence similarity. Comparative analysis revealed that there were 35,749, 43,657, and 36,819 differentially expressed genes (DEGs) in three comparisons (4th_Ovary versus 3rd_Ovary, 4th_Ovary versus 2rd_Ovary, and 4th_Ovary versus 1st_Ovary, respectively). In total, 24,295 DEGs were different expressed in 4th_Ovary. Enrichment and pathway analyses of the DEGs were also carried out to excavate the candidate genes related to reproduction and growth, and 402 genes that potential involved in the regulation of reproduction and growth were identified, e.g., GnRHR (GnRH receptor), GHR 2 (growth hormone receptor 2), I_LGF1R (insulin-like growth factor 1 receptor), etc. Our findings expanded the genomic resources of L. japonicus and provided fundamental information for further studies.


Assuntos
Bass/genética , Reprodução/genética , Fatores Etários , Animais , Bass/metabolismo , Cordados/genética , Feminino , Peixes , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Ovário/metabolismo , RNA/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA