Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.621
Filtrar
2.
Dis Aquat Organ ; 139: 161-174, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32406871

RESUMO

During 1992 and 1993, a bacterial disease occurred in a seawater Atlantic salmon Salmo salar farm, causing serious mortalities. The causative agent was subsequently named as Oceanivirga salmonicida, a member of the Leptotrichiaceae. Searches of 16S rRNA gene sequence databases have shown sequence similarities between O. salmonicida and uncultured bacterial clones from the digestive tracts of marine mammals. In the current study, oral samples were taken from stranded dolphins (common dolphin Delphinus delphis, striped dolphin Stenella coeruleoalba) and healthy harbour seals Phoca vitulina. A bacterium with growth characteristics consistent with O. salmonicida was isolated from a common dolphin. The isolate was confirmed as O. salmonicida, by comparisons to the type strain, using 16S rRNA gene, gyrB, groEL, and recA sequence analyses, average nucleotide identity analysis, and MALDI-TOF mass spectrometry. Metagenomic analysis indicated that the genus Oceanivirga represented a significant component of the oral bacterial microbiomes of the dolphins and seals. However, sequences consistent with O. salmonicida were only found in the dolphin samples. Analyses of marine mammal microbiome studies in the NCBI databases showed sequences consistent with O. salmonicida from the common dolphin, striped dolphin, bottlenose dolphin Tursiops truncatus, humpback whale Megaptera novaeangliae, and harbour seal. Sequences from marine environmental studies in the NCBI databases showed no sequences consistent with O. salmonicida. The findings suggest that several species of marine mammals are natural hosts of O. salmonicida.


Assuntos
Caniformia , Salmo salar , Animais , Cetáceos , Fusobactérias , RNA Ribossômico 16S
3.
PLoS One ; 15(5): e0229058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469874

RESUMO

A wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.


Assuntos
Acústica/instrumentação , Organismos Aquáticos , Conservação dos Recursos Naturais , Vocalização Animal/fisiologia , Animais , Caniformia , Cetáceos/fisiologia , Monitoramento Ambiental , Humanos , Biologia Marinha , Ruído/efeitos adversos , Energia Renovável/efeitos adversos , Som , Ondas de Maré
4.
Mar Pollut Bull ; 154: 111026, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32174485

RESUMO

Impulsive sounds generated during seismic surveys have elicited behavioral responses in marine mammals and could cause hearing impairment or injury. Mitigating exposure to seismic sound often relies on real-time marine mammal detection. Detection performance is influenced by detection method, environmental conditions, and observer experience. We conducted a field comparison of real-time detections made by marine mammal observers (MMOs), a rotating infrared (IR) camera, and via passive acoustic monitoring (PAM). Data were collected from a 38 m research vessel offshore Atlantic Canada. Our results indicate that overall detection rates increase when complementary methods are used. MMOs and PAM are likely the most effective combination during high seas and precipitation. PAM and IR can be used in darkness. In good visibility, MMOs with IR or PAM should increase detections. Our results illustrate the importance of addressing false positive IR detections, matching system capabilities to sea conditions/species of interest, and employing experienced observers.


Assuntos
Acústica , Cetáceos , Monitoramento Ambiental , Animais , Canadá , Mamíferos , Oceanos e Mares
5.
BMC Evol Biol ; 20(1): 24, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046633

RESUMO

BACKGROUND: Understanding the origins of genome content has long been a goal of molecular evolution and comparative genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid changes which occurred on high dN/dS lineages have been mapped to protein structures. RESULTS: An analysis of this exhaustive database has enabled a characterization of the processes of lineage-specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways most commonly found to have elevated rates of evolution included those involved in metabolism, immunity, and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented on proteins most likely to undergo directional selection. A set of gene families which experience increased numbers of duplications within short evolutionary times are associated with pathways involved in metabolism, olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint in ß-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement. CONCLUSION: Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for facilitating this understanding of lineage-specific evolution.


Assuntos
Cordados/classificação , Cordados/genética , Evolução Molecular , Especiação Genética , Variação Genética/fisiologia , Animais , Evolução Biológica , Cetáceos/classificação , Cetáceos/genética , Duplicação Gênica/fisiologia , Genes Duplicados , Genoma , Genômica , Filogenia
6.
PLoS Comput Biol ; 16(1): e1007598, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929520

RESUMO

Passive acoustic monitoring has become an important data collection method, yielding massive datasets replete with biological, environmental and anthropogenic information. Automated signal detectors and classifiers are needed to identify events within these datasets, such as the presence of species-specific sounds or anthropogenic noise. These automated methods, however, are rarely a complete substitute for expert analyst review. The ability to visualize and annotate acoustic events efficiently can enhance scientific insights from large, previously intractable datasets. A MATLAB-based graphical user interface, called DetEdit, was developed to accelerate the editing and annotating of automated detections from extensive acoustic datasets. This tool is highly-configurable and multipurpose, with uses ranging from annotation and classification of individual signals or signal-clusters and evaluation of signal properties, to identification of false detections and false positive rate estimation. DetEdit allows users to step through acoustic events, displaying a range of signal features, including time series of received levels, long-term spectral averages, time intervals between detections, and scatter plots of peak frequency, RMS, and peak-to-peak received levels. Additionally, it displays either individual, or averaged sound pressure waveforms, and power spectra within each acoustic event. These views simultaneously provide analysts with signal-level detail and encounter-level context. DetEdit creates datasets of signal labels for further analyses, such as training classifiers and quantifying occurrence, abundances, or trends. Although designed for evaluating underwater-recorded odontocete echolocation click detections, DetEdit can be adapted to almost any stereotyped impulsive signal. Our software package complements available tools for the bioacoustic community and is provided open source at https://github.com/MarineBioAcousticsRC/DetEdit.


Assuntos
Curadoria de Dados/métodos , Monitoramento Ambiental/métodos , Espectrografia do Som , Interface Usuário-Computador , Vocalização Animal/classificação , Animais , Cetáceos/fisiologia , Bases de Dados Factuais , Internet , Processamento de Sinais Assistido por Computador
7.
Mar Pollut Bull ; 150: 110674, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31726239

RESUMO

The odontocetes are at the top of the trophic chains, and because they accumulate numerous compounds throughout life, they are considered as bioindicators of ecosystem contamination. This study aimed to analyze the concentrations of trace elements of the short-beak common dolphin (Delphinus delphis) and Fraser's dolphin (Lagenodelphis hosei) from the Southwestern Atlantic Ocean. Regardless of the tissue and the species, the average concentration of silver was the lowest. The highest concentration in the kidney was cadmium, while in the liver it varied between selenium and total mercury according to the species. The bioconcentration process was present in relation with the age and standard length in common dolphins. Additionally, Se-HgT molar ratios differed among species. This study provides new information on the current state of pollution by trace elements in common and Fraser's dolphins in the Southwest Atlantic, and it serves as a complement to the work in tropical waters.


Assuntos
Cetáceos/metabolismo , Monitoramento Ambiental/métodos , Cadeia Alimentar , Oligoelementos/análise , Poluentes Químicos da Água/análise , Animais , Oceano Atlântico , Golfinhos , Ecossistema , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Mol Immunol ; 117: 131-138, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770676

RESUMO

V(D)J recombination is a process of somatic recombination catalyzed by proteins encoded by RAG1 and RAG2 genes, both restricted to the genome of jawed vertebrates. Their proteins constitute the enzymatic core of V(D)J recombination machinery and are crucial for jawed vertebrate adaptive immunity. Mammals possess great ecological diversity, and their complex evolutionary history associated with radiation to different environments presented many distinct pathogenic challenges from these different habitats. Cetaceans comprise a mammalian order of fully aquatic mammals that have arisen from a complete terrestrial ancestor and, accordingly, was confronted with challenges from changing environmental pathogens while they transitioned from land to sea. In this study we undertook molecular evolutionary analyses of RAG1 and RAG2 genes, exploring the possible role of natural selection acting on these genes focusing on the cetacean lineage. We performed phylogenetic reconstructions on IQ-TREE, together with selection analyses in the codeml program of the PAML package, and in the FITMODEL program for codon evolution and switching on both the RAG1 and RAG2 genes. Our findings demonstrate that RAG1 and RAG2 remained fairly conserved among tetrapods, with purifying selection acting on both genes, with evidence for a few punctuated shifts in nucleotide substitution rates of both genes along tetrapod evolution. We demonstrate differential evolution in the closely linked genes RAG1 and RAG2 specifically in cetaceans.


Assuntos
Evolução Biológica , Cetáceos/genética , Cetáceos/imunologia , Proteínas de Ligação a DNA/genética , Genes RAG-1/genética , Animais , Proteínas de Ligação a DNA/imunologia , Genes RAG-1/imunologia , Filogenia
9.
Environ Pollut ; 258: 113680, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31796317

RESUMO

Pollution by marine litter is raising major concerns due to its potential impact on marine biodiversity and, above all, on endangered mega-fauna species, such as cetaceans and sea turtles. The density and distribution of marine litter and mega-fauna have been traditionally monitored through observer-based methods, yet the advent of new technologies has introduced aerial photography as an alternative monitoring method. However, to integrate results produced by different monitoring techniques and consider the photographic method a viable alternative, this 'new' methodology must be validated. This study aims to compare observations obtained from the concurrent application of observer-based and photographic methods during aerial surveys. To do so, a Partenavia P-68 aircraft equipped with an RGB sensor was used to monitor the waters off the Spanish Mediterranean coast along 12 transects (941 km). Over 10000 images were collected and checked manually by a photo-interpreter to detect potential targets, which were classified as floating marine macro-litter, mega-fauna and seabirds. The two methods allowed the detection of items from the three categories and proved equally effective for the detection of cetaceans, sea turtles and large fish on the sea surface. However, the photographic method was more effective for floating litter detection and the observer-based method was more effective for seabird detection. These results provide the first validation of the use of aerial photography to monitor floating litter and mega-fauna over the marine surface.


Assuntos
Cetáceos/metabolismo , Monitoramento Ambiental/métodos , Plásticos , Tartarugas , Animais , Mar Mediterrâneo , Fotografação , Tecnologia de Sensoriamento Remoto , Resíduos
10.
PLoS One ; 14(12): e0225391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31825956

RESUMO

Aegicetus gehennae is a new African protocetid whale based on a partial skull with much of an associated postcranial skeleton. The type specimen, Egyptian Geological Museum, Cairo [CGM] 60584, was found near the base of the early-Priabonian-age (earliest late Eocene) Gehannam Formation of the Wadi Al Hitan World Heritage Site in Egypt. The cranium is distinctive in having ventrally-deflected exoccipitals. The vertebral column is complete from cervical C1 through caudal Ca9, with a vertebral formula of 7:15:4:4:9+, representing, respectively, the number of cervical, thoracic, lumbar, sacral, and caudal vertebrae. CGM 60584 has two more rib-bearing thoracic vertebrae than other known protocetids, and two fewer lumbars. Sacral centra are unfused, and there is no defined auricular surface on the ilium. Thus there was no weight-bearing sacroiliac joint. The sternum is distinctive in being exceptionally broad and flat. The body weight of CGM 60584, a putative male, is estimated to have been about 890 kg in life. Long bones of the fore and hind limbs are shorter than expected for a protocetid of this size. Bones of the manus are similar in length and more robust compared to those of the pes. A log vertebral length profile for CGM 60584 parallels that of middle Eocene Maiacetus inuus through the anterior and middle thorax, but more posterior vertebrae are proportionally longer. Vertebral elongation, loss of a sacroiliac articulation, and hind limb reduction indicate that Aegicetus gehennae was more fully aquatic and less specialized as a foot-powered swimmer than earlier protocetids. It is doubtful that A. gehennae had a tail fluke, and the caudal flattening known for basilosaurids is shorter relative to vertebral column length than flattening associated with a fluke in any modern whale. Late protocetids and basilosaurids had relatively long skeletons, longer than those known earlier and later, and the middle-to-late Eocene transition from foot-powered to tail-powered swimming seemingly involved some form of mid-body-and-tail undulation.


Assuntos
Cetáceos , Natação/fisiologia , Cauda/anatomia & histologia , Cauda/fisiologia , Animais , Evolução Biológica , Egito , Fósseis , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Baleias
11.
Sci Adv ; 5(9): eaaw6671, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31579821

RESUMO

The transition from land to water in whales and dolphins (cetaceans) was accompanied by remarkable adaptations. To reveal genomic changes that occurred during this transition, we screened for protein-coding genes that were inactivated in the ancestral cetacean lineage. We found 85 gene losses. Some of these were likely beneficial for cetaceans, for example, by reducing the risk of thrombus formation during diving (F12 and KLKB1), erroneous DNA damage repair (POLM), and oxidative stress-induced lung inflammation (MAP3K19). Additional gene losses may reflect other diving-related adaptations, such as enhanced vasoconstriction during the diving response (mediated by SLC6A18) and altered pulmonary surfactant composition (SEC14L3), while loss of SLC4A9 relates to a reduced need for saliva. Last, loss of melatonin synthesis and receptor genes (AANAT, ASMT, and MTNR1A/B) may have been a precondition for adopting unihemispheric sleep. Our findings suggest that some genes lost in ancestral cetaceans were likely involved in adapting to a fully aquatic lifestyle.


Assuntos
Adaptação Biológica , Cetáceos/genética , Evolução Molecular , Deleção de Genes , Genoma , Genômica , Animais , Biologia Computacional/métodos , Dano ao DNA , Reparo do DNA , Genômica/métodos , Modelos Biológicos , Anotação de Sequência Molecular , Fases de Leitura Aberta , Estresse Oxidativo , Filogenia
12.
PLoS One ; 14(10): e0223712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600321

RESUMO

Cetacean stranding records can provide vital information on species richness and diversity through space and time. Here we collate stranding records from Victoria, Australia and assess them for temporal, spatial and demographic trends. Between 1920 and 2016, 424 stranding events involving 907 individuals were recorded across 31 Cetacea species from seven families, including five new species records for the state. Seven of these events were mass strandings, and six mother and calf strandings were recorded. Importantly, 48% of the species recorded are recognised as data deficient on the IUCN Red List. The most commonly recorded taxa were Tursiops spp. (n = 146) and Delphinus delphis (common dolphins, n = 81), with the greatest taxonomic richness (n = 24) and highest incidence of stranding events documented within the Otways mesoscale bioregion. We found no seasonal stranding patterns anywhere in the state. While our findings improve understanding of the spatial and temporal patterns of cetacean diversity within Victoria, we suggest greater effort to collect demographic data at stranding events in order to better study state-wide patterns through time. We conclude with guidelines for minimum data collection standards for future strandings to maximise information capture from each event.


Assuntos
Biodiversidade , Cetáceos/fisiologia , Análise Espaço-Temporal , Envelhecimento/fisiologia , Animais , Cetáceos/classificação , Feminino , Geografia , Lagos , Masculino , Vitória
13.
BMC Evol Biol ; 19(1): 194, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651232

RESUMO

BACKGROUND: The transition from land to sea by the ancestor of cetaceans approximately 50 million years ago was an incredible evolutionary event that led to a series of morphological, physiological, and behavioral adaptations. During this transition, bone microstructure evolved from the typical terrestrial form to the specialized structure found in modern cetaceans. While the bone microstructure of mammals has been documented before, investigations of its genetic basis lag behind. The increasing number of cetaceans with whole-genome sequences available may shed light on the mechanism underlying bone microstructure evolution as a result of land to water transitions. RESULTS: Cetacean bone microstructure is consistent with their diverse ecological behaviors. Molecular evolution was assessed by correlating bone microstructure and gene substitution rates in terrestrial and aquatic species, and by detecting genes under positive selection along ancestral branches of cetaceans. We found that: 1) Genes involved in osteoclast function are under accelerated evolution in cetaceans, suggestive of important roles in bone remodeling during the adaptation to an aquatic environment; 2) Genes in the Wnt pathway critical for bone development and homeostasis show evidence of divergent evolution in cetaceans; 3) Several genes encoding bone collagens are under selective pressure in cetaceans. CONCLUSIONS: Our results suggest that evolutionary pressures have shaped the bone microstructure of cetaceans, to facilitate life in diverse aquatic environments.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Osso e Ossos/anatomia & histologia , Cetáceos/anatomia & histologia , Cetáceos/genética , Seleção Genética , Animais , Mapeamento Cromossômico , Estudos de Associação Genética , Filogenia , Análise de Regressão , Especificidade da Espécie
14.
BMC Vet Res ; 15(1): 372, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655601

RESUMO

BACKGROUND: The stranding events of cetaceans in the Philippines provide opportunities for gathering biological information and specimens, especially from the pelagic forms. As part of an effort to monitor the health of wild cetaceans, this study detected Leptospira spp. and Toxoplasma gondii, causative agents of the emerging zoonotic diseases leptospirosis and toxoplasmosis respectively, in their stranded representatives. From October 2016-August 2018, 40 cetaceans (representing 14 species) that stranded nationwide were sampled for brain, cardiac muscle, skeletal muscle, kidney, and blood tissues, urine, and sera. These were subjected to molecular, serological, culture, and histopathological analyses to detect the target pathogens. RESULTS: T. gondii was detected in 20 (71%) of the 28 cetaceans with biological samples subjected to either molecular detection through RE gene amplification or IgG antibodies detection through agglutination-based serological assay. On the other hand, Leptospira was detected in 18 (64%) of 28 cetaceans with biological samples subjected to bacterial culture, molecular detection through 16S rDNA amplification, or IgM antibodies detection through ELISA-based serological assay. CONCLUSIONS: There is the plausibility of toxoplasmosis and leptospirosis in cetacean populations found in the Philippines, however, acute or chronic phases of infections in sampled stranded individuals cannot be confirmed in the absence of supporting pathological observations and corroborating detection tests. Further studies should look for more evidences of pathogenicity, and explore the specific mechanisms by which pelagic cetacean species become infected by Leptospira spp. and T. gondii. As there is growing evidence on the role of cetaceans as sentinels of land-sea movement of emerging pathogens and the diseases they cause, any opportunity, such as their stranding events, should be maximized to investigate the health of their populations. Moreover, the role of leptospirosis or toxoplasmosis in these stranding events must be considered.


Assuntos
Cetáceos/microbiologia , Cetáceos/parasitologia , Leptospira/isolamento & purificação , Toxoplasma/isolamento & purificação , Animais , Anticorpos Antibacterianos , Anticorpos Antiprotozoários , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Leptospira/imunologia , Leptospirose/epidemiologia , Leptospirose/veterinária , Masculino , Filipinas/epidemiologia , Toxoplasmose Animal/epidemiologia
15.
PLoS One ; 14(10): e0212532, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574136

RESUMO

Most cetacean species are wide-ranging and highly mobile, creating significant challenges for researchers by limiting the scope of data that can be collected and leaving large areas un-surveyed. Aerial surveys have proven an effective way to locate and study cetacean movements but are costly and limited in spatial extent. Here we present a semi-automated pipeline for whale detection from very high-resolution (sub-meter) satellite imagery that makes use of a convolutional neural network (CNN). We trained ResNet, and DenseNet CNNs using down-scaled aerial imagery and tested each model on 31 cm-resolution imagery obtained from the WorldView-3 sensor. Satellite imagery was tiled and the trained algorithms were used to classify whether or not a tile was likely to contain a whale. Our best model correctly classified 100% of tiles with whales, and 94% of tiles containing only water. All model architectures performed well, with learning rate controlling performance more than architecture. While the resolution of commercially-available satellite imagery continues to make whale identification a challenging problem, our approach provides the means to efficiently eliminate areas without whales and, in doing so, greatly accelerates ocean surveys for large cetaceans.


Assuntos
Cetáceos/fisiologia , Aprendizado Profundo , Imagens de Satélites , Animais
16.
Genes Genomics ; 41(12): 1417-1430, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31535317

RESUMO

BACKGROUND: The relatively rapid spread and diversity of marine pathogens posed an initial and ongoing challenge for cetaceans (whales, dolphins, and porpoises), descendants of terrestrial mammals that transitioned from land to sea approximately 56 million years ago. Toll-like receptors (TLRs) play important roles in regulating immunity against pathogen infections by detecting specific molecular patterns and activating a wide range of downstream signaling pathways. The ever-increasing catalogue of mammalian genomes offers unprecedented opportunities to reveal genetic changes associated with evolutionary and ecological processes. OBJECTIVE: This study aimed to explore the molecular evolution of TLR signaling pathway genes in cetaceans. METHODS: Genes involved in the TLR signaling pathway were retrieved by BLAST searches using human coding sequences as queries. We tested each gene for positive selection along the cetacean branches using PAML and Hyphy. Physicochemical property changes of amino acids at all positively selected residues were assessed by TreeSAAP and visualized with WebLogo. Bovine and dolphin TLR4 was assessed using human embryonic kidney cell line HEK293, which lacks TLR4 and its co-receptor MD-2. RESULTS: We demonstrate that eight TLR signaling pathway genes are under positive selection in cetaceans. These include key genes in the response to Gram-negative bacteria: TLR4, CD14, and LY96 (MD-2). Moreover, 41 out of 65 positively selected sites were inferred to harbor substitution that dramatically changes the physicochemical properties of amino acids, with most of them situated in or adjacent to functional regions. We also found strong evidence that positive selection occurred in the lineage of the Yangtze finless porpoise, likely reflecting relatively recent adaptions to a freshwater milieu. Species-specific differences in TLR4 response were observed between cetacean and terrestrial species. Cetacean TLR4 was significantly less responsive to lipopolysaccharides from a terrestrial E. coli strain, possibly a reflection of the arms race of host-pathogen co-evolution faced by cetaceans in an aquatic environment. CONCLUSION: This study provides further impetus for studies on the evolution and function of the cetacean immune system.


Assuntos
Cetáceos/genética , Evolução Molecular , Transdução de Sinais/genética , Receptores Toll-Like/genética , Animais , Bovinos , Células HEK293 , Humanos , Imunidade Inata/genética
17.
Sci Total Environ ; 694: 133683, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394330

RESUMO

The fate and transportation of mercury in the marine environment are driven by a combination of anthropogenic atmospheric and aquatic sources, as well as natural geological inputs. Mercury biomagnifies up the food chain, resulting in the bioaccumulation of toxic concentrations in higher trophic organisms even when concentrations in their habitat remain below the threshold level for direct toxicity. As a result, mercury exposure has been recognised as a health concern for both humans and top marine predators, including cetaceans. There appears to be no overall trend in the global measured concentrations reported in cetaceans between 1975 and 2010, although differences between areas show that the highest concentrations in recent decades have been measured in the tissues of Mediterranean odontocetes. There is increasing concern for the impacts of mercury on the Arctic marine ecosystem with changes in water temperatures, ocean currents, and prey availability, all predicted to affect exposure. The accumulation of mercury in various tissues has been linked to renal and hepatic damage as well as reported neurotoxic, genotoxic, and immunotoxic effects. These effects have been documented through studies on stranded and by-caught cetaceans as well as in vitro cell culture experiments. Demethylation of methylmercury and protection by selenium have been suggested as possible mercury detoxification mechanisms in cetaceans that may explain the very high concentrations measured in tissues of some species with no apparent acute toxicity. Thus, the ratio of selenium to mercury is of importance when aiming to determine the impact of the contaminant load at an individual level. The long-term population level effects of mercury exposure are unknown, and continued monitoring of odontocete populations in particular is advised in order to predict the consequences of mercury uptake on marine food chains in the future.


Assuntos
Cetáceos/metabolismo , Monitoramento Ambiental , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Regiões Árticas , Ecossistema
18.
Rev Bras Parasitol Vet ; 28(3): 395-402, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411314

RESUMO

Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii. In cetaceans, T. gondii infection is a significant cause of morbidity and mortality. Despite the worldwide range and broad cetacean host record of T. gondii infection, there is limited information on toxoplasmosis in cetaceans from the Southern hemisphere. We investigated the occurrence of T. gondii by histopathology and immunohistochemistry in tissue samples of 185 animals comprising 20 different cetacean species from Brazil. Three out of 185 (1.6%) animals presented T. gondii-associated lesions: a captive killer whale Orcinus orca, a free-ranging common bottlenose dolphin Tursiops truncatus and a free-ranging Guiana dolphin Sotalia guianensis. The main lesions observed in these animals were necrotizing hepatitis, adrenalitis and lymphadenitis associated with protozoal cysts or extracellular tachyzoites presenting immunolabeling with anti-T. gondii antibodies. This study widens the spectrum of species and the geographic range of this agent in Brazil, and provides the first reports of T. gondii infection in a captive killer whale and in a free-ranging common bottlenose dolphin in South America.


Assuntos
Anticorpos Antiprotozoários/sangue , Cetáceos/parasitologia , Toxoplasma/imunologia , Toxoplasmose Animal/epidemiologia , Animais , Brasil/epidemiologia , Cetáceos/classificação , Imuno-Histoquímica , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/patologia
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1780): 20180066, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31303160

RESUMO

Cetaceans are fully aquatic predatory mammals that have successfully colonized virtually all marine habitats. Their adaptation to these habitats, so radically different from those of their terrestrial ancestors, can give us comparative insights into the evolution of female roles and kinship in mammalian societies. We provide a review of the diversity of such roles across the Cetacea, which are unified by some key and apparently invariable life-history features. Mothers are uniparous, while paternal care is completely absent as far as we currently know. Maternal input is extensive, lasting months to many years. Hence, female reproductive rates are low, every cetacean calf is a significant investment, and offspring care is central to female fitness. Here strategies diverge, especially between toothed and baleen whales, in terms of mother-calf association and related social structures, which range from ephemeral grouping patterns to stable, multi-level, societies in which social groups are strongly organized around female kinship. Some species exhibit social and/or spatial philopatry in both sexes, a rare phenomenon in vertebrates. Communal care can be vital, especially among deep-diving species, and can be supported by female kinship. Female-based sociality, in its diverse forms, is therefore a prevailing feature of cetacean societies. Beyond the key role in offspring survival, it provides the substrate for significant vertical and horizontal cultural transmission, as well as the only definitive non-human examples of menopause. This article is part of the theme issue 'The evolution of female-biased kinship in humans and other mammals'.


Assuntos
Cetáceos/fisiologia , Comportamento Social , Animais , Comportamento Animal , Evolução Biológica , Cetáceos/classificação , Cetáceos/genética , Feminino , Masculino , Filogenia
20.
BMC Evol Biol ; 19(1): 157, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351448

RESUMO

BACKGROUND: Cetaceans exhibit an exceptionally wide range of body size, yet in this regard, their genetic basis remains poorly explored. In this study, 20 body-size-related genes for which duplication, mutation, or deficiency can cause body size change in mammals were chosen to preliminarily investigate the evolutionary mechanisms underlying the dramatic body size variation in cetaceans. RESULTS: We successfully sequenced 20 body-size-related genes in six representative species of cetaceans. A total of 46 codons from 10 genes were detected and determined to be under strong positive selection, 32 (69.6%) of which were further found to be under radical physiochemical changes; moreover, some of these sites were localized in or near important functional regions. Interestingly, positively selected genes were well matched with body size evolution: for small cetaceans, strong evidence of positive selection was detected at ACAN, OBSL1, and GRB10, within which mutations or duplications could cause short stature; positive selection was found in large cetaceans at CBS and EIF2AK3, which could promote growth, and at the PLOD1 gene, within which mutations could cause tall stature. Importantly, relationship analyses revealed that the evolutionary rate of CBS was positively related to body length and body mass with statistical significance. Additionally, we identified 32 cetacean-specific amino acid changes in 10 genes. CONCLUSIONS: This is the first study to investigate the molecular basis of dramatic body size variation in cetaceans. Our results provide evidence of the positive selection of several body-size-related genes in cetaceans, as well as divergent selection between large or small cetaceans, which suggest cetacean body size variation possibly associated with these genes. In addition, cetacean-specific amino acid changes might have played key roles in body size evolution after the divergence of cetaceans from their terrestrial relatives. Overall, the evolutionary pattern of these body-size-related genes could provide new insights into genetic mechanisms for the body size variation in cetaceans.


Assuntos
Tamanho Corporal/genética , Cetáceos/genética , Evolução Molecular , Animais , Filogenia , Análise de Regressão , Seleção Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA