Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.502
Filtrar
1.
PLoS Negl Trop Dis ; 14(8): e0008363, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32790716

RESUMO

Visceral leishmaniasis (VL) remains an important public health issue worldwide causing substantial morbidity and mortality. The Indian subcontinent accounted for up to 90% of the global VL burden in the past but made significant progress during recent years and is now moving towards elimination. However, to achieve and sustain elimination of VL, knowledge gaps on infection reservoirs and transmission need to be addressed urgently. Xenodiagnosis is the most direct way for testing the infectiousness of hosts to the vectors and can be used to investigate the dynamics and epidemiology of Leishmania donovani transmission. There are, however, several logistic and ethical issues with xenodiagnosis that need to be addressed before its application on human subjects. In the current Review, we discuss the critical knowledge gaps in VL transmission and the role of xenodiagnosis in disease transmission dynamics along with its technical challenges. Establishment of state of the art xenodiagnosis facilities is essential for the generation of much needed evidence in the VL elimination initiative.


Assuntos
Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/transmissão , Phlebotomus/parasitologia , Xenodiagnóstico , Animais , Ásia , Doenças Assintomáticas , Reservatórios de Doenças/parasitologia , Humanos , Leishmania donovani/fisiologia
2.
PLoS One ; 15(7): e0236127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692783

RESUMO

Visceral leishmaniasis (VL) is an important zoonosis in Brazil. Dogs are considered the main domestic reservoirs of the disease in the country; hence, control measures are focused on these reservoirs. Despite efforts to prevent and control VL, important reductions in disease prevalence and incidence have not been identified, stimulating the development and application of new strategies. The choice and implementation of new control strategies can benefit from the application of mathematical models that allow the simulation of different strategies in different scenarios. Selecting the best strategy to be implemented is also supported by cost-effectiveness studies. Here we used the results of a mathematical model in which scenarios, including isolated use of the vaccine and insecticide-impregnated collar (IIC), both at different coverage rates, were simulated to conduct a cost-effectiveness study. The costs were calculated for each scenario considering a simulation period of four years. Collar application in both infected and non-infected animals was the most cost-effective strategy. For example, to reduce the prevalence in humans and dogs by approximately 70%, the costs ranged from $250,000 and $550,000 for the IICs and vaccination, respectively. Even in the scenario with 40% loss/replacement of IICs, this measure was more advantageous in terms of cost-effectiveness than vaccination. If the vaccine were applied with culling of seropositive tested dogs, then the measure became more effective with a reduced cost compared with the vaccine alone. The use of the three first consecutive vaccine doses had the greatest impact on the cost of the vaccination strategy. The advantage of using IICs is that there is no need for a prior diagnosis, unlike vaccination, reducing costs and facilitating implementation. The present study aims to contribute to strategies to reduce hosts infected with VL by reducing public expenditure.


Assuntos
Doenças do Cão/economia , Doenças do Cão/prevenção & controle , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/economia , Leishmaniose Visceral/prevenção & controle , Vacinação/economia , Vacinação/veterinária , Animais , Brasil/epidemiologia , Doenças do Cão/parasitologia , Doenças do Cão/transmissão , Cães , Leishmania donovani/isolamento & purificação , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/veterinária , Prevalência
3.
PLoS Pathog ; 16(6): e1008291, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479529

RESUMO

The protozoan parasite Leishmania donovani (L. donovani) causes visceral leishmaniasis, a chronic infection which is fatal when untreated. Herein, we investigated whether in addition to altering transcription, L. donovani modulates host mRNA translation to establish a successful infection. Polysome-profiling revealed that one third of protein-coding mRNAs expressed in primary mouse macrophages are differentially translated upon infection with L. donovani promastigotes or amastigotes. Gene ontology analysis identified key biological processes enriched for translationally regulated mRNAs and were predicted to be either activated (e.g. chromatin remodeling and RNA metabolism) or inhibited (e.g. intracellular trafficking and antigen presentation) upon infection. Mechanistic in silico and biochemical analyses showed selective activation mTOR- and eIF4A-dependent mRNA translation, including transcripts encoding central regulators of mRNA turnover and inflammation (i.e. PABPC1, EIF2AK2, and TGF-ß). L. donovani survival within macrophages was favored under mTOR inhibition but was dampened by pharmacological blockade of eIF4A. Overall, this study uncovers a vast yet selective reprogramming of the host cell translational landscape early during L. donovani infection, and suggests that some of these changes are involved in host defense mechanisms while others are part of parasite-driven survival strategies. Further in vitro and in vivo investigation will shed light on the contribution of mTOR- and eIF4A-dependent translational programs to the outcome of visceral leishmaniasis.


Assuntos
Fator de Iniciação 4A em Eucariotos/metabolismo , Leishmania donovani/metabolismo , Leishmaniose Visceral , Macrófagos , Biossíntese de Proteínas , RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos
4.
PLoS Negl Trop Dis ; 14(6): e0008272, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555598

RESUMO

INTRODUCTION: Presence of asymptomatic individuals in endemic areas is common. The possible biomarkers in asymptomatic individuals once they get exposed to infection as well as following conversion to symptomatic disease are yet to be identified.We identified asymptomatic Visceral leishmaniasis (VL) infection amongst rK39+sorted direct agglutination test positive (DAT+) endemic healthy population and confirmed it by quantitative PCR(qPCR).The immunological determinants such as Adenosine deaminase (ADA), Interferon gamma (IFN-γ), Tumour Necrosis Factor alpha (TNF-α) and Interleukin 10 (IL-10)were examined to predict probable biomarkers for conversion to symptomatic VL. METHODS: Sample size was 5794 healthy individuals from VL endemic region. Antibody tests(DAT &rK39) were performed and later a qPCR assay was employed using kDNA specific primers and probes. Immunological biomarkers examined were ADA level by ADA-MTP kit and quantitative cytokines(IFN-γ, IL-10 and TNF-α) by ELISA. RESULTS: 120 asymptomatic individuals of 308 rK39 sero-positives were DAT positive comprising of 56 with previous history and 64 with no history of VL. RT-PCR confirmed asymptomatic VL in 42 sero-positives. These were followed up through repeated qPCR and evaluation of immunological determinants. We observed10 symptomatic cases converted from a total of 42 asymptomatic individuals identified at base-line. The level of ADA, IL-10 and IFN-γ remained consistently high in asymptomatic cases and amongst these, ADA and IL-10 but not IFN-γ remained higher at the development of clinical symptoms into active VL. On the contrary, there was no significant change in the mean concentration of TNF-α at both stages of the disease. DISCUSSION: We surmise from our data that considerable proportion of asymptomatic cases can be a reservoir and may play a crucial role in transmission of visceral leishmaniasis in endemic areas. The data also suggests that ADA and IL-10 can serve as a potential biomarker during the conversion of asymptomatic into symptomatic VL.


Assuntos
Anticorpos Antiprotozoários/sangue , Citocinas/sangue , Leishmaniose Visceral/epidemiologia , Adolescente , Adulto , Idoso , Testes de Aglutinação , Infecções Assintomáticas/epidemiologia , Biomarcadores/sangue , Criança , Progressão da Doença , Doenças Endêmicas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Índia/epidemiologia , Leishmania donovani , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/imunologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Soroconversão , Adulto Jovem
5.
Am J Trop Med Hyg ; 103(1): 308-314, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32394874

RESUMO

Visceral leishmaniasis (VL) is endemic in Asia, East and North Africa, South America, and Southern Europe, and is a major public health problem in the Indian subcontinent. Miltefosine received approval in 2002 to treat VL in India, and the Indian National Vector Borne Disease Control Programme later adopted a single dose (10 mg/kg) of liposomal amphotericin B. We report results of a randomized trial comparing the efficacy of combination therapy with an Indian preparation of liposomal amphotericin B (single dose of 7.5 mg/kg) and short-course miltefosine (2.5 mg/kg/day for 14 days; n = 66) in comparison to miltefosine monotherapy (2.5 mg/kg/day for 28 days; n = 78). Nine patients in the miltefosine group and three in the combination therapy group had to discontinue therapy because of serious adverse events. At the end of the therapy, the clinical and parasitological cure rate was 100% in both groups. By per-protocol analysis, by 6 months after completion of treatment, 12 of 69 patients in the miltefosine monotherapy arm (17.4%, 95% CI: 10.24-28%) and none in the combination therapy arm had relapse. Over 5 years of follow-up, 10 patients in the miltefosine monotherapy arm (all within 0.5-2 years after completing therapy) and none in the combination therapy arm experienced post-kala-azar dermal leishmaniasis. Combination therapy offered benefits over miltefosine monotherapy for VL in India.


Assuntos
Anfotericina B/uso terapêutico , Antiprotozoários/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Fosforilcolina/análogos & derivados , Adolescente , Adulto , Idoso , Anfotericina B/administração & dosagem , Antiprotozoários/administração & dosagem , Criança , Quimioterapia Combinada , Feminino , Humanos , Índia , Leishmania donovani , Masculino , Pessoa de Meia-Idade , Fosforilcolina/administração & dosagem , Fosforilcolina/uso terapêutico , Adulto Jovem
6.
PLoS Pathog ; 16(5): e1008190, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413071

RESUMO

DNA replication protein Cdc45 is an integral part of the eukaryotic replicative helicase whose other components are the Mcm2-7 core, and GINS. We identified a PIP box motif in Leishmania donovani Cdc45. This motif is typically linked to interaction with the eukaryotic clamp proliferating cell nuclear antigen (PCNA). The homotrimeric PCNA can potentially bind upto three different proteins simultaneously via a loop region present in each monomer. Multiple binding partners have been identified from among the replication machinery in other eukaryotes, and the concerted /sequential binding of these partners are central to the fidelity of the replication process. Though conserved in Cdc45 across Leishmania species and Trypanosoma cruzi, the PIP box is absent in Trypanosoma brucei Cdc45. Here we investigate the possibility of Cdc45-PCNA interaction and the role of such an interaction in the in vivo context. Having confirmed the importance of Cdc45 in Leishmania DNA replication we establish that Cdc45 and PCNA interact stably in whole cell extracts, also interacting with each other directly in vitro. The interaction is mediated via the Cdc45 PIP box. This PIP box is essential for Leishmania survival. The importance of the Cdc45 PIP box is also examined in Schizosaccharomyces pombe, and it is found to be essential for cell survival here as well. Our results implicate a role for the Leishmania Cdc45 PIP box in recruiting or stabilizing PCNA on chromatin. The Cdc45-PCNA interaction might help tether PCNA and associated replicative DNA polymerase to the DNA template, thus facilitating replication fork elongation. Though multiple replication proteins that associate with PCNA have been identified in other eukaryotes, this is the first report demonstrating a direct interaction between Cdc45 and PCNA, and while our analysis suggests the interaction may not occur in human cells, it indicates that it may not be confined to trypanosomatids.


Assuntos
Leishmania donovani/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cromatina/genética , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Leishmania donovani/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Nucleotidiltransferases/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Análise de Sequência de Proteína/métodos
7.
Parasite Immunol ; 42(6): e12719, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248547

RESUMO

AIMS: Visceral leishmaniasis (VL), caused by Leishmania donovani in India, is fatal if untreated, having serious concern of limited chemotherapeutic options. In this study, we evaluated antileishmanial efficacy of purified chlorogenic acid (CGA) against promastigotes and intracellular amastigotes infected into RAW264.7 macrophages. METHODS AND RESULTS: Chlorogenic acid was effective both on promastigotes (IC50  = 78.394 µmol/L, i.e. 27.75 µg/mL) and intracellular amastigotes (ED50  = 26.752 µmol/L, i.e. 9.47 µg/mL). In promastigotes, significant retardation in mitotic growth was caused both by cell-death and reduction of metabolic activity, evidenced by propidium-iodide uptake and MTT assay, respectively. Flow cytometric analysis revealed that retardation of mitotic growth was due to cell-cycle arrest at G1/S checkpoint. Complete clearance of amastigotes from infected RAW264.7 cells, assessed by microscopic counting, was achieved with 60 µmol/L (21.24 µg/mL) CGA for 24 hours, with negligible toxicity to host macrophages. This parasite clearing efficacy was comparable to 1.0 µg/mL (1.082 µmol/L) Amphotericin B, and 20 µmol/L Miltefosine, two standard antileishmanial drugs. Cytokine-ELISA revealed that elevated IL-10 production by infected macrophages was reduced after parasite clearance. Consequently, IL-12, TNF and NO (assayed by Griess test) production by macrophages were significantly increased after successful resolution of infection. CONCLUSION: Chlorogenic acid might emerge as a potential antileishmanial drug.


Assuntos
Antiprotozoários/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ácido Clorogênico/uso terapêutico , Citocinas/metabolismo , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Óxido Nítrico/metabolismo , Animais , Linhagem Celular , Índia , Leishmaniose Visceral/mortalidade , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Células RAW 264.7
8.
PLoS Pathog ; 16(4): e1008456, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282850

RESUMO

Leishmania donovani causes visceral leishmaniasis (VL), which is typically fatal without treatment. There is substantial variation between individuals in rates of disease progression, response to treatment and incidence of post-treatment sequelae, specifically post-kala-azar dermal leishmaniasis (PKDL). Nevertheless, the majority of infected people are asymptomatic carriers. Hamsters and mice are commonly used as models of fatal and non-fatal VL, respectively. Host and parasite genetics are likely to be important factors, but in general the reasons for heterogeneous disease presentation in humans and animal models are poorly understood. Host microbiota has become established as a factor in cutaneous forms of leishmaniasis but this has not been studied in VL. We induced intestinal dysbiosis in mice and hamsters by long-term treatment with broad-spectrum antibiotics in their drinking water. There were no significant differences in disease presentation in dysbiotic mice. In contrast, dysbiotic hamsters infected with L. donovani had delayed onset and progression of weight loss. Half of control hamsters had a rapid progression phenotype compared with none of the ABX-treated animals and the nine-month survival rate was significantly improved compared to untreated controls (40% vs. 10%). Antibiotic-treated hamsters also had significantly less severe hepatosplenomegaly, which was accompanied by a distinct cytokine gene expression profile. The protective effect was not explained by differences in parasite loads or haematological profiles. We further found evidence that the gut-liver axis is a key aspect of fatal VL progression in hamsters, including intestinal parasitism, bacterial translocation to the liver, malakoplakia and iron sequestration, none of which occurred in non-progressing murine VL. Diverse bacterial genera were cultured from VL affected livers, of which Rodentibacter was specifically absent from ABX-treated hamsters, indicating this pathobiont may play a role in promoting disease progression. The results provide experimental support for antibiotic prophylaxis against secondary bacterial infections as an adjunct therapy in human VL patients.


Assuntos
Antibacterianos/administração & dosagem , Infecções Bacterianas/prevenção & controle , Coinfecção/prevenção & controle , Enteropatias Parasitárias/parasitologia , Leishmaniose Visceral/parasitologia , Animais , Antibioticoprofilaxia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Coinfecção/microbiologia , Cricetinae , Progressão da Doença , Feminino , Microbioma Gastrointestinal , Humanos , Leishmania donovani/fisiologia , Leishmaniose Visceral/complicações , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Simbiose
9.
PLoS Negl Trop Dis ; 14(4): e0007143, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310945

RESUMO

Parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis due to Leishmania donovani is endemic in Ethiopia where it has also been responsible for major epidemics. The presence of hybrid genotypes has been widely reported in surveys of natural populations, genetic variation reported in a number of Leishmania species, and the extant capacity for genetic exchange demonstrated in laboratory experiments. However, patterns of recombination and the evolutionary history of admixture that produced these hybrid populations remain unclear. Here, we use whole-genome sequence data to investigate Ethiopian L. donovani isolates previously characterized as hybrids by microsatellite and multi-locus sequencing. To date there is only one previous study on a natural population of Leishmania hybrids based on whole-genome sequences. We propose that these hybrids originate from recombination between two different lineages of Ethiopian L. donovani occurring in the same region. Patterns of inheritance are more complex than previously reported with multiple, apparently independent, origins from similar parents that include backcrossing with parental types. Analysis indicates that hybrids are representative of at least three different histories. Furthermore, isolates were highly polysomic at the level of chromosomes with differences between parasites recovered from a recrudescent infection from a previously treated individual. The results demonstrate that recombination is a significant feature of natural populations and contributes to the growing body of data that shows how recombination, and gene flow, shape natural populations of Leishmania.


Assuntos
Quimera , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Etiópia , Genótipo , Humanos , Recombinação Genética , Sequenciamento Completo do Genoma
10.
PLoS One ; 15(4): e0232116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343719

RESUMO

Myosin XXI (Myo21) is a novel class of myosin present in all kinetoplastid parasites, such as Trypanosoma and Leishmania. This protein in Leishmania promastigotes is predominantly localized to the proximal region of the flagellum, and is involved in the flagellum assembly, cell motility and intracellular vesicle transport. As Myo21 contains two ubiquitin associated (UBA)-like domains (UBLD) in its amino acid sequence, we considered it of interest to analyze the role of these domains in the intracellular distribution and functions of this protein in Leishmania cells. In this context, we created green fluorescent protein (GFP)-conjugates of Myo21 constructs lacking one of the two UBLDs at a time or both the UBLDs as well as GFP-conjugates of only the two UBLDs and Myo21 tail lacking the two UBLDs and separately expressed them in the Leishmania cells. Our results show that unlike Myo21-GFP, Myo21-GFP constructs lacking either one or both the UBLDs failed to concentrate and co-distribute with actin in the proximal region of the flagellum. Nevertheless, the GFP conjugate of only the two UBLDs was found to predominantly localize to the flagellum base. Additionally, the cells that expressed only one or both the UBLDs-deleted Myo21-GFP constructs possessed shorter flagellum and displayed slower motility, compared to Myo21-GFP expressing cells. Further, the intracellular vesicle transport and cell growth were severely impaired in the cells that expressed both the UBLDs deleted Myo21-GFP construct, but in contrast, virtually no effect was observed on the intracellular vesicle transport and growth in the cells that expressed single UBLD deleted mutant proteins. Moreover, the observed slower growth of both the UBLDs-deleted Myo21-GFP expressing cells was primarily due to delayed G2/M phase caused by aberrant nuclear and daughter cell segregation during their cell division process. These results taken together clearly reveal that the presence of UBLDs in Myo21 are essentially required for its predominant localization to the flagellum base, and perhaps also in its involvement in the flagellum assembly and cell division. Possible role of UBLDs in involvement of Myo21 during Leishmania flagellum assembly and cell cycle is discussed.


Assuntos
Flagelos/metabolismo , Leishmania donovani/fisiologia , Miosinas/química , Miosinas/metabolismo , Actinas/metabolismo , Ciclo Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Miosinas/genética , Domínios Proteicos , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Vesículas Transportadoras/metabolismo , Ubiquitina/metabolismo
11.
Parasit Vectors ; 13(1): 196, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295617

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) caused by dimorphic Leishmania species is a parasitic disease with high socioeconomic burden in endemic areas worldwide. Sustaining control of VL in terms of proper and prevailing immunity development is a global necessity amid unavailability of a prophylactic vaccine. Screening of experimental proteome of the human disease propagating form of Leishmania donovani (amastigote) can be more pragmatic for in silico mining of novel vaccine candidates. METHODS: By using an immunoinformatic approach, CD4+ and CD8+ T cell-specific epitopes from experimentally reported L. donovani proteins having secretory potential and increased abundance in amastigotes were screened. A chimera linked with a Toll-like receptor 4 (TLR4) peptide adjuvant was constructed and evaluated for physicochemical characteristics, binding interaction with TLR4 in simulated physiological condition and the trend of immune response following hypothetical immunization. RESULTS: Selected epitopes from physiologically important L. donovani proteins were found mostly conserved in L. infantum, covering theoretically more than 98% of the global population. The multi-epitope chimeric vaccine was predicted as stable, antigenic and non-allergenic. Structural analysis of vaccine-TLR4 receptor docked complex and its molecular dynamics simulation suggest sufficiently stable binding interface along with prospect of non-canonical receptor activation. Simulation dynamics of immune response following hypothetical immunization indicate active and memory B as well as CD4+ T cell generation potential, and likely chance of a more Th1 polarized response. CONCLUSIONS: The methodological approach and results from this study could facilitate more informed screening and selection of candidate antigenic proteins for entry into vaccine production pipeline in future to control human VL.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito T/imunologia , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Adjuvantes Imunológicos/química , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Biologia Computacional , Leishmania infantum/imunologia , Leishmaniose Visceral/parasitologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteômica , Proteínas de Protozoários/imunologia , Vacinas de Subunidades/imunologia
12.
PLoS Negl Trop Dis ; 14(4): e0008246, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324742

RESUMO

The development of an accurate protein-based antigen detection assay for diagnosis of active visceral leishmaniasis (VL) would represent a major clinical advance. VL is a serious and fatal disease caused by the parasites Leishmania infantum and Leishmania donovani. The gold standard confirmatory diagnostic test for VL is the demonstration of parasites or their DNA from aspirates from spleen, lymph node, and bone marrow or from blood buffy coats. Here we describe the production and use of monoclonal antibodies (mAbs) for the development of a sensitive and specific antigen detection capture ELISA for VL diagnosis. This test simultaneously detects six leishmania protein biomarkers that we have previously described (Li-isd1, Li-txn1, Li-ntf2, Ld-mao1, Ld-ppi1 and Ld-mad1). The initial clinical validation of this new mAb-based multiplexed capture ELISA showed a sensitivity of ≥93%. The test was negative with 35 urine samples from healthy control subjects as well as with 30 patients with confirmed non-VL tropical diseases (cutaneous leishmaniasis, n = 6; Chagas disease, n = 6; schistosomiasis, n = 6; and tuberculosis, n = 12). These results strongly support the possible utility of this mAb-based multiplexed capture ELISA as a promising diagnostic test for active VL as well as for monitoring the treatment efficacy of this disease. The test is ready for upscaling and validation for clinical use.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/urina , Leishmania donovani/química , Leishmania infantum/química , Leishmaniose Visceral/diagnóstico , Urinálise/métodos , Urina/química , Adolescente , Adulto , Idoso , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Biomarcadores/urina , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
13.
PLoS Negl Trop Dis ; 14(4): e0008167, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275661

RESUMO

Leishmania donovani, an intracellular protozoan parasite upon infection, encounters a range of antimicrobial factors within the host cells. Consequently, the parasite has evolved mechanisms to evade this hostile defense system through inhibition of macrophage activation that, in turn, enables parasite replication and survival. There is growing evidence that epigenetic down-regulation of the host genome by intracellular pathogens leads to acute infection. Epigenetic modification is mediated by chromatin remodeling, histone modifications, or DNA methylation. Histone deacetylases (HDACs) removes acetyl groups from lysine residues on histones, thereby leading to chromatin remodeling and gene silencing. Here, using L. donovani infected macrophages differentiated from THP-1 human monocytic cells, we report a link between host chromatin modifications, transcription of defense genes and intracellular infection with L. donovani. Infection with L. donovani led to the silencing of host defense gene expression. Histone deacetylase 1 (HDAC1) transcript levels, protein expression, and enzyme activity showed a significant increase upon infection. HDAC1 occupancy at the promoters of the defense genes significantly increased upon infection, which in turn resulted in decreased histone H3 acetylation in infected cells, resulting in the down-regulation of mRNA expression of host defense genes. Small molecule mediated inhibition and siRNA mediated down-regulation of HDAC1 increased the expression levels of host defense genes. Interestingly, in this study, we demonstrate that the silencing of HDAC1 by both siRNA and pharmacological inhibitors resulted in decreased intracellular parasite survival. The present data not only demonstrate that up-regulation of HDAC1 and epigenetic silencing of host cell defense genes is essential for L. donovani infection but also provides novel therapeutic strategies against leishmaniasis.


Assuntos
Citoplasma/metabolismo , Epigênese Genética , Histona Desacetilase 1/genética , Leishmania donovani/patogenicidade , Leishmaniose/genética , Macrófagos/parasitologia , Linhagem Celular , Montagem e Desmontagem da Cromatina , Citoplasma/parasitologia , Metilação de DNA , Regulação para Baixo , Regulação da Expressão Gênica , Inativação Gênica , Histona Desacetilase 1/metabolismo , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Parasita/genética , Humanos , Monócitos/metabolismo , Monócitos/parasitologia , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Células THP-1
14.
PLoS Negl Trop Dis ; 14(4): e0008188, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275665

RESUMO

Leishmaniasis is one of the Neglected Tropical Diseases (NTDs) which is closely associated with poverty and has gained much relevance recently due to its opportunistic coinfection with HIV. It is a protozoan zoonotic disease transmitted by a dipteran Phlebotomus, Lutzomyia/ Sergentomyia sandfly; during blood meals on its vertebrate intermediate hosts. It is a four-faceted disease with its visceral form being more deadly if left untreated. It is endemic across the tropics and sub-tropical regions of the world. It can be considered the third most important NTD after malaria and lymphatic filariasis. Currently, there are numerous drawbacks on the fight against leishmaniasis which includes: non-availability of vaccines, limited availability of drugs, high cost of mainstay drugs and parasite resistance to current treatments. In this study, we screened the antileishmanial activity, selectivity, morphological alterations, cell cycle progression and apoptotic potentials of six Pathogen box compounds from Medicine for Malaria Venture (MMV) against Leishmania donovani promastigotes and amastigotes. From this study, five of the compounds showed great promise as lead chemotherapeutics based on their high selectivity against the Leishmania donovani parasite when tested against the murine mammalian macrophage RAW 264.7 cell line (with a therapeutic index ranging between 19-914 (promastigotes) and 1-453 (amastigotes)). The cell cycle progression showed growth arrest at the G0-G1 phase of mitotic division, with an indication of apoptosis induced by two (2) of the pathogen box compounds tested. Our findings present useful information on the therapeutic potential of these compounds in leishmaniasis. We recommend further in vivo studies on these compounds to substantiate observations made in the in vitro study.


Assuntos
Antiprotozoários/farmacologia , Desenvolvimento de Medicamentos , Leishmania donovani/efeitos dos fármacos , Anfotericina B/farmacologia , Animais , Apoptose/efeitos dos fármacos , Concentração Inibidora 50 , Cinética , Leishmania donovani/crescimento & desenvolvimento , Macrófagos/parasitologia , Camundongos , Microscopia de Fluorescência , Células RAW 264.7
15.
Am J Trop Med Hyg ; 102(4): 788-796, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32124719

RESUMO

The direct agglutination test (DAT) for visceral leishmaniasis (VL) is the serodiagnostic test for VL that has the most robust sensitivity and specificity in the field across all endemic regions. It is based on trypsin-treated and formaldehyde-fixed whole promastigote cells from Leishmania donovani. The exact identity and nature of the epitopes on the DAT antigen that cause agglutination with VL patients' sera are currently unknown. In this study, we performed antigen-inhibition studies which revealed that lipophosphoglycan (LPG) and the DAT antigen share epitopes. Antibody inhibition with a monoclonal antibody directed against the phosphoglycan repeat epitope of LPG showed that this is not the epitope that reacts with human sera. Oxidation of carbohydrates by sodium metaperiodate did not alter the reactivity of human sera with the DAT antigen and LPG. This indicates that carbohydrates do not play a role in the reaction of the DAT antigen with antibodies in serum from VL patients, and that they also are not involved in the reaction of LPG with the same serum. We conclude that the noncarbohydrate moiety of LPG, that is, the core-anchor fragment, and potentially other noncarbohydrate epitopes on the surface of the DAT antigen are responsible for its agglutination with antibodies from VL patients. As LPG plays a role in the DAT reaction, this could facilitate the following: 1) incorporation of LPG, preferably the synthetic version of the core-anchor fragment, into an immunochromatographic test format that is more adapted as a point-of-care test (short incubation, little training, and equipment needed) than DAT and 2) enhancing the quality control for the production of the DAT antigen.


Assuntos
Testes de Aglutinação/métodos , Antígenos de Protozoários , Leishmaniose Visceral/diagnóstico , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Ensaio de Imunoadsorção Enzimática , Humanos , Leishmania donovani , Leishmania infantum , Sensibilidade e Especificidade
16.
PLoS Negl Trop Dis ; 14(3): e0008052, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203500

RESUMO

Post-kala-azar dermal leishmaniasis (PKDL) is clinical outcome of visceral leishmaniasis (VL) and is thought to be the potential reservoir of parasite. Miltefosine (MF) is the only oral drug existing for treatment of post-kala-azar dermal leishmaniasis (PKDL). Increased miltefosine tolerance in clinical isolates of Leishmania donovani has been reported and is one of the major concerns in the treatment of PKDL. Here, we report a highly ulcerated PKDL case that was successfully cured after miltefosine treatment.


Assuntos
Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/etiologia , Leishmaniose Visceral/complicações , Leishmaniose Visceral/tratamento farmacológico , Antiprotozoários/uso terapêutico , Humanos , Índia , Leishmania donovani/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/parasitologia , Masculino , Pessoa de Meia-Idade , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Pele/diagnóstico por imagem , Pele/patologia
17.
Parasit Vectors ; 13(1): 94, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085719

RESUMO

BACKGROUND: New therapeutic drugs are urgently needed against visceral leishmaniasis because current drugs, such as pentavalent antimonials and miltefosine, produce severe side effects and development of resistance. Whether cyclosporine A (CsA) and its derivatives can be used as therapeutic drugs for visceral leishmaniasis has been controversial for many years. METHODS: In this study, we evaluated the efficacy of CsA and its derivative, dihydrocyclosporin A (DHCsA-d), against promastigotes and intracellular amastigotes of Leishmania donovani. Sodium stibogluconate (SSG) was used as a positive control. RESULTS: Our results showed that DHCsA-d was able to inhibit the proliferation of L. donovani promastigotes (IC50: 21.24 µM and 12.14 µM at 24 h and 48 h, respectively) and intracellular amastigotes (IC50: 5.23 µM and 4.84 µM at 24 and 48 h, respectively) in vitro, but CsA treatment increased the number of amastigotes in host cells. Both DHCsA-d and CsA caused several alterations in the morphology and ultrastructure of L. donovani, especially in the mitochondria. However, DHCsA-d showed high cytotoxicity towards cells of the mouse macrophage cell line RAW264.7, with CC50 values of 7.98 µM (24 h) and 6.65 µM (48 h). Moreover, DHCsA-d could increase IL-12, TNF-α and IFN-γ production and decrease the levels of IL-10, IL-4, NO and H2O2 in infected macrophages. On the contrary, CsA decreased IL-12, TNF-α, and IFN-γ production and increased the levels of IL-10, IL-4, NO and H2O2 in infected macrophages. The expression of L. donovani cyclophilin A (LdCyPA) in promastigotes and intracellular amastigotes and the expression of cyclophilin A (CyPA) in RAW 264.7 cells were found to be significantly downregulated in the CsA-treated group compared to those in the untreated group. However, no significant changes in LdCyPA and CyPA levels were found after DHCsA-d or SSG treatment. CONCLUSIONS: Our findings initially resolved the dispute regarding the efficacy of CsA and DHCsA-d for visceral leishmaniasis treatment. CsA showed no significant inhibitory effect on intracellular amastigotes. DHCsA-d significantly inhibited promastigotes and intracellular amastigotes, but it was highly cytotoxic. Therefore, CsA and DHCsA-d are not recommended as antileishmanial drugs.


Assuntos
Antiprotozoários/farmacologia , Ciclosporina/farmacologia , Ciclosporinas/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-2/imunologia , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/fisiologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Células RAW 264.7
18.
Parasit Vectors ; 13(1): 96, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087758

RESUMO

BACKGROUND: Since the introduction of miltefosine (MIL) as first-line therapy in the kala-azar elimination programme in the Indian subcontinent, treatment failure rates have been increasing. Since parasite infectivity and virulence may become altered upon treatment relapse, this laboratory study assessed the phenotypic effects of repeated in vitro and in vivo MIL exposure. METHODS: Syngeneic Leishmania donovani lines either or not exposed to MIL were compared for drug susceptibility, rate of promastigote multiplication and metacyclogenesis, macrophage infectivity and behaviour in the sand fly vector, Lutzomyia longipalpis. RESULTS: Promastigotes of both in vitro and in vivo MIL-selected strains displayed a slightly reduced drug susceptibility that was associated with a reduced MIL-accumulation linked to a lower copy number (disomic state) of chromosome 13 harboring the miltefosine transporter (LdMT) gene. In vitro selected promastigotes showed a lower rate of metacyclogenesis whereas the in vivo derived promastigotes displayed a moderately increased growth rate. Repeated MIL exposure did neither influence the parasite load nor metacyclogenesis in the sand fly vector. CONCLUSIONS: Recurrent in vitro and in vivo MIL exposure evokes a number of very subtle phenotypic and genotypic changes which could make promastigotes less susceptible to MIL without attaining full resistance. These changes did not significantly impact on infection in the sand fly vector.


Assuntos
Antiprotozoários/farmacologia , Insetos Vetores/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/fisiologia , Fosforilcolina/análogos & derivados , Psychodidae/parasitologia , Aclimatação , Animais , Resistência a Medicamentos , Humanos , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Testes de Sensibilidade Parasitária , Fenótipo , Fosforilcolina/farmacologia , Virulência
19.
PLoS Negl Trop Dis ; 14(2): e0007991, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32023254

RESUMO

BACKGROUND: During infections involving intracellular pathogens, iron performs a double-edged function by providing the pathogen with nutrients, but also boosts the host's antimicrobial arsenal. Although the role of iron has been described in visceral leishmaniasis, information regarding its status in the dermal sequel, Post Kala-azar Dermal Leishmaniasis (PKDL) remains limited. Accordingly, this study aimed to establish the status of iron within monocytes/macrophages of PKDL cases. METHODOLOGY/PRINCIPAL FINDINGS: The intramonocytic labile iron pool (LIP), status of CD163 (hemoglobin-haptoglobin scavenging receptor) and CD71 (transferrin receptor, Tfr) were evaluated within CD14+ monocytes by flow cytometry, and soluble CD163 by ELISA. At the lesional sites, Fe3+ status was evaluated by Prussian blue staining, parasite load by qPCR, while the mRNA expression of Tfr (TfR1/CD71), CD163, divalent metal transporter-1 (DMT-1), Lipocalin-2 (Lcn-2), Heme-oxygenase-1 (HO-1), Ferritin, Natural resistance-associated macrophage protein (NRAMP-1) and Ferroportin (Fpn-1) was evaluated by droplet digital PCR. Circulating monocytes demonstrated elevated levels of CD71, CD163 and soluble CD163, which corroborated with an enhanced lesional mRNA expression of TfR, CD163, DMT1 and Lcn-2. Additionally, the LIP was raised along with an elevated mRNA expression of ferritin and HO-1, as also iron exporters NRAMP-1 and Fpn-1. CONCLUSIONS/SIGNIFICANCE: In monocytes/macrophages of PKDL cases, enhancement of the iron influx gateways (TfR, CD163, DMT-1 and Lcn-2) possibly accounted for the enhanced LIP. However, enhancement of the iron exporters (NRAMP-1 and Fpn-1) defied the classical Ferritinlow/Ferroportinhigh phenotype of alternatively activated macrophages. The creation of such a pro-parasitic environment suggests incorporation of chemotherapeutic strategies wherein the availability of iron to the parasite can be restricted.


Assuntos
Ferro/metabolismo , Leishmaniose Cutânea/metabolismo , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Feminino , Humanos , Índia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/fisiologia , Leishmaniose Cutânea/parasitologia , Lipocalina-2/genética , Lipocalina-2/metabolismo , Macrófagos/metabolismo , Masculino , Monócitos/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Adulto Jovem
20.
PLoS Negl Trop Dis ; 14(1): e0008020, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961866

RESUMO

Myeloid-related protein 14 (MRP14) belongs to the S100 calcium-binding protein family and is expressed in neutrophils and inflammatory macrophages. Increase in the number of MRP14+ cells or serum level of MRP14 is associated with various diseases such as autoimmune diseases and infectious diseases, suggesting the involvement of the molecule in pathogenesis of those diseases. In this study, to examine the pathological involvement of MRP14 during cutaneous and visceral leishmaniasis, wild-type (WT) and MRP14 knockout (MRP14KO) mice were infected with Leishmania major and L. donovani. Increase in the number of MRP14+ cells at the infection sites in wild-type mice was commonly found in the skin during L. major infection as well as the spleen and liver during L. donovani infection. In contrast, the influence of MRP14 to the pathology seemed different between the two infections. MRP14 depletion exacerbated the lesion development and ulcer formation in L. major infection. On the other hand, the depletion improved anemia and splenomegaly but not hepatomegaly at 24 weeks of L. donovani infection. These results suggest that, distinct from its protective role in CL, MRP14 is involved in exacerbation of some symptoms during VL.


Assuntos
Anemia/metabolismo , Anemia/patologia , Calgranulina B/metabolismo , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Esplenomegalia/metabolismo , Esplenomegalia/patologia , Anemia/genética , Anemia/parasitologia , Animais , Calgranulina B/genética , Feminino , Humanos , Leishmania donovani/fisiologia , Leishmania major/fisiologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/parasitologia , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Baço/metabolismo , Baço/parasitologia , Baço/patologia , Esplenomegalia/genética , Esplenomegalia/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA