Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
Arch Virol ; 165(7): 1671-1673, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32335770

RESUMO

A previously undescribed badnavirus was isolated from Zamia fischeri showing symptoms of chlorosis, necrosis, and ringspot. The virus has bacilliform virions 30 nm in diameter and averaging 120 nm in length. The viral genome is 9227 bp in length and contains three open reading frames characteristic of members of the genus Badnavirus. The largest open reading frame (ORF3) encodes a putative polyprotein, with predicted domains including zinc finger, aspartic protease, reverse transcriptase (RT) and RNase H. The virus is tentatively named "cycad leaf necrosis virus" (CLNV). Within the genus Badnavirus, CLNV was most closely related to sugarcane bacilliform Guadeloupe D virus (FJ439817), sharing 69% identity at the nucleotide level in the RT + RNase H region. This virus is the first badnavirus reported to infect cycads, and it has the largest genome among the currently characterized badnaviruses.


Assuntos
Badnavirus/genética , Cycadopsida/virologia , Genoma Viral , Badnavirus/classificação , Badnavirus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Proteínas Virais/genética
2.
PLoS One ; 15(3): e0229843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32150571

RESUMO

Seasonal phenomena in plants are primarily affected by day length and temperature. The shoot transcriptomes of trees grown in the field and a controlled-environment chamber were compared to characterize genes that control annual rhythms and the effects of day length- and temperature-regulated genes in the gymnosperm Japanese cedar (Cryptomeria japonica D. Don), which exhibits seasonally indeterminate growth. Annual transcriptome dynamics were clearly demonstrated by principal component analysis using microarray data obtained under field-grown conditions. Analysis of microarray data from trees grown in a controlled chamber identified 2,314 targets exhibiting significantly different expression patterns under short-day (SD) and long-day conditions, and 2,045 targets exhibited significantly different expression patterns at 15°C (LT; low temperature) versus 25°C. Interestingly, although growth was suppressed under both SD and LT conditions, approximately 80% of the SD- and LT-regulated targets differed, suggesting that each factor plays a unique role in the annual cycle. The top 1,000 up-regulated targets in the growth/dormant period in the field coincided with more than 50% of the SD- and LT-regulated targets, and gene co-expression network analysis of the annual transcriptome indicated a close relationship between the SD- and LT-regulated targets. These results indicate that the respective effects of day length and temperature interact to control annual transcriptome dynamics. Well-known upstream genes of signaling pathways responsive to environmental conditions, such as the core clock (LHY/CjLHYb and CCA1/CjLHYa) and PEBP family (MFT) genes, exhibited unique expression patterns in Japanese cedar compared with previous reports in other species, suggesting that these genes control differences in seasonal regulation mechanisms between species. The results of this study provide new insights into seasonal regulation of transcription in Japanese cedar.


Assuntos
Cryptomeria/genética , Regulação da Expressão Gênica de Plantas , Estações do Ano , Temperatura , Transcriptoma , Cycadopsida/genética , Genes de Plantas/genética , Genes Reguladores , Árvores/genética , Árvores/metabolismo
3.
J Plant Res ; 133(2): 205-215, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32048093

RESUMO

Rubisco specificity factor (Sc/o), a measure of the relative capacities of an enzyme to catalyze carboxylation and oxygenation of ribulose-1,5-bisphosphate, determines the extent of photosynthetic CO2 assimilation and photorespiratory CO2 release. The current model of C3 photosynthesis, the Farquhar-von Caemmerer-Berry (FvCB) model, requires a species-specific Sc/o. However, Sc/o values have never been reported in conifers, likely because in vitro kinetic analysis of conifer Rubisco presents difficulties. To estimate the Sc/o of conifers and compare it with angiosperm Sc/o, we measured changes in leaf CO2 compensation points (Γ) in response to O2 partial pressure for a variety of leaves, with different rates of day respiration (Rday) and maximum Rubisco carboxylation (Vcmax) in gymnosperms (Ginkgo biloba), conifers (Metasequoia glyptostroboides and Cryptomeria japonica), and angiosperms (Nicotiana tabacum and Phaseolus vulgaris). As predicted by the FvCB model, the slope of a linear function of Γ vs O2 partial pressure, d, increased alongside increasing Rday/Vcmax. The Sc/o was obtainable from this relationship between d and Rday/Vcmax, because the d values at Rday/Vcmax = 0 corresponded to α/Sc/o, where α was the photorespiratory CO2 release rate per Rubisco oxygenation rate (generally assumed to be 0.5). The calculated Sc/o values of N. tabacum and P. vulgaris exhibited good agreement with those reported by in vitro studies. The Sc/o values of both conifers were similar to those of the two angiosperm species. In contrast, the Sc/o value of G. biloba was significantly lower than those of the other four studied species. These results suggest that our new method for Sc/o estimation is applicable to C3 plants, including those for which in vitro kinetic analysis is difficult. Furthermore, results also suggest that conifer Sc/o does not differ significantly from that of C3 angiosperms, assuming α remains unchanged.


Assuntos
Dióxido de Carbono/fisiologia , Cycadopsida/enzimologia , Magnoliopsida/enzimologia , Oxigênio/fisiologia , Ribulose-Bifosfato Carboxilase/fisiologia , Traqueófitas/enzimologia , Cinética , Fotossíntese , Folhas de Planta
4.
Plant Dis ; 104(4): 1009-1010, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065562

RESUMO

'Candidatus Phytoplasma pini'-related strain MDPP, the reference strain of subgroup 16SrXXI-B, is a pathogen associated with witches' broom disease of Pinus spp. in North America. Here, we report the first draft genome sequence of 'Ca. Phytoplasma pini' strain MDPP, which consists of 474,136 bases, with a G + C content of 22.22%. This information will facilitate comparative genomics of gymnosperm-infecting phytoplasmas.


Assuntos
Cycadopsida , Phytoplasma , DNA Bacteriano , Genômica , América do Norte , Filogenia , Doenças das Plantas , Pirrolidinas , RNA Ribossômico 16S
5.
BMC Evol Biol ; 20(1): 10, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959109

RESUMO

BACKGROUND: Gymnosperms represent five of the six lineages of seed plants. However, most sequenced plant mitochondrial genomes (mitogenomes) have been generated for angiosperms, whereas mitogenomic sequences have been generated for only six gymnosperms. In particular, complete mitogenomes are available for all major seed plant lineages except Conifer II (non-Pinaceae conifers or Cupressophyta), an important lineage including six families, which impedes a comprehensive understanding of the mitogenomic diversity and evolution in gymnosperms. RESULTS: Here, we report the complete mitogenome of Taxus cuspidata in Conifer II. In comparison with previously released gymnosperm mitogenomes, we found that the mitogenomes of Taxus and Welwitschia have lost many genes individually, whereas all genes were identified in the mitogenomes of Cycas, Ginkgo and Pinaceae. Multiple tRNA genes and introns also have been lost in some lineages of gymnosperms, similar to the pattern observed in angiosperms. In general, gene clusters could be less conserved in gymnosperms than in angiosperms. Moreover, fewer RNA editing sites were identified in the Taxus and Welwitschia mitogenomes than in other mitogenomes, which could be correlated with fewer introns and frequent gene losses in these two species. CONCLUSIONS: We have sequenced the Taxus cuspidata mitogenome, and compared it with mitogenomes from the other four gymnosperm lineages. The results revealed the diversity in size, structure, gene and intron contents, foreign sequences, and mutation rates of gymnosperm mitogenomes, which are different from angiosperm mitogenomes.


Assuntos
Genoma Mitocondrial , Taxus/genética , Núcleo Celular , Cycadopsida/genética , Evolução Molecular , Íntrons , Magnoliopsida/genética , Filogenia , Edição de RNA
6.
Nat Commun ; 11(1): 545, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992718

RESUMO

Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.


Assuntos
Secas , Árvores/crescimento & desenvolvimento , Adaptação Fisiológica , Mudança Climática , Cycadopsida/crescimento & desenvolvimento , Ecologia , Florestas , Magnoliopsida/crescimento & desenvolvimento , Mortalidade , Solo/química , Especificidade da Espécie , Estresse Fisiológico , Análise de Sobrevida , Árvores/classificação , Água
7.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810184

RESUMO

Caffeoyl shikimate esterase (CSE) has been reported to be involved in lignin biosynthesis; however, studies of CSE in gymnosperms are lacking. In this study, CSE was successfully cloned from Larix kaempferi (LkCSE) based on Larix laricina transcriptome screening. LkCSE was likely to have catalytic activity based on homologous sequence alignment and phylogenetic analyses of CSEs from different species. In vitro assays with the recombinant enzyme validated the catalytic activity of LkCSE, indicating its function in converting caffeoyl shikimate into caffeate and shikimate. Additionally, the optimum reaction pH and temperature of LkCSE were determined to be 6.0 and 30 °C, respectively. The values of Km and Vmax of CSE for caffeoyl shikimate were 98.11 µM and 14.44 nM min-1, respectively. Moreover, LkCSE was observed to have tissue expression specificity and was abundantly expressed in stems and leaves, especially stems, which was 50 times higher than the expression levels of roots. Lastly, translational fusion assays using LkCSE fused with green fluorescent proteins (GFP) in tobacco leaves indicated that LkCSE was localized in the plasma membrane and endoplasmic reticulum (ER). These results revealed that CSE clearly functions in gymnosperms and it is possible for LkCSE to interact with other ER-resident proteins and regulate mass flux in the monolignol biosynthesis pathway.


Assuntos
Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Larix/enzimologia , Lignina/biossíntese , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Cycadopsida/enzimologia , Cycadopsida/genética , Regulação da Expressão Gênica de Plantas , Larix/genética , Lignina/genética , Filogenia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Ácido Chiquímico/química
8.
Proc Natl Acad Sci U S A ; 116(46): 23192-23201, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659037

RESUMO

Species assemble into communities through ecological and evolutionary processes. Phylogenetic niche conservatism-the tendency of species to retain ancestral ecological distributions-is thought to influence which species from a regional species pool can persist in a particular environment. We analyzed data for seed plants in China to test hypotheses about the distribution of species within regional floras. Of 16 environmental variables, actual evapotranspiration, minimum temperature of the coldest month, and annual precipitation most strongly influenced regional species richness, phylogenetic dispersion, and phylogenetic diversity for both gymnosperms (cone-bearing plants) and angiosperms (flowering plants). For most evolutionary clades at, and above, the family level, the relationships between metrics of phylogenetic dispersion (i.e., average phylogenetic distance among species), or phylogenetic diversity, and the 3 environmental variables were consistent with the tropical niche conservatism hypothesis, which predicts closer phylogenetic relatedness and reduced phylogenetic diversity with increasing environmental stress. The slopes of the relationships between phylogenetic relatedness and the 3 environmental drivers identified in this analysis were steeper for primarily tropical clades, implying greater niche conservatism, than for primarily temperate clades. These observations suggest that the distributions of seed plants across large-scale environmental gradients in China are constrained by conserved adaptations to the physical environment, i.e., phylogenetic niche conservatism.


Assuntos
Cycadopsida/genética , Magnoliopsida/genética , Filogenia , China , Meio Ambiente , Filogeografia
9.
BMC Plant Biol ; 19(1): 402, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519148

RESUMO

BACKGROUND: Around the Cretaceous-Paleogene (K-Pg) boundary, an obvious global cooling occurred, which resulted in dramatic changes in terrestrial ecosystems and the evolutionary trends of numerous organisms. However, how plant lineages responded to the cooling has remained unknown until now. Between ca. 70-60 Ma Mesocyparis McIver & Basinger (Cupressaceae), an extinct conifer genus, was distributed from eastern Asia to western North America and provides an excellent opportunity to solve this riddle. RESULTS: Here we report a new species, Mesocyparis sinica from the early Paleocene of Jiayin, Heilongjiang, northeastern China. By integrating lines of evidence from phylogeny and comparative morphology of Mesocyparis, we found that during ca.70-60 Ma, the size of seed cone of Mesocyparis more than doubled, probably driven by the cooling during the K-Pg transition, which might be an effective adaptation for seed dispersal by animals. More importantly, we discovered that the northern limit of this genus, as well as those of two other arboreal taxa Metasequoia Miki ex Hu et Cheng (gymnosperm) and Nordenskioldia Heer (angiosperm), migrated ca.4-5° southward in paleolatitude during this time interval. CONCLUSIONS: Our results suggest that the cooling during the K-Pg transition may have been responsible for the increase in size of the seed cone of Mesocyparis and have driven the migration of plants southwards.


Assuntos
Fósseis , Evolução Biológica , Cycadopsida/fisiologia , Ecossistema , Magnoliopsida/fisiologia , Plantas
10.
Genome Biol Evol ; 11(10): 2789-2796, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504501

RESUMO

Plastid genomes (plastomes) of parasitic plants undergo dramatic reductions as the need for photosynthesis relaxes. Here, we report the plastome of the only known heterotrophic gymnosperm Parasitaxus usta (Podocarpaceae). With 68 unique genes, of which 33 encode proteins, 31 tRNAs, and four rRNAs in a plastome of 85.3-kb length, Parasitaxus has both the smallest and the functionally least capable plastid genome of gymnosperms. Although the heterotroph retains chlorophyll, all genes for photosynthesis are physically or functionally lost, making photosynthetic energy gain impossible. The pseudogenization of the three plastome-encoded light-independent chlorophyll biosynthesis genes chlB, chlL, and chlN implies that Parasitaxus relies on either only the light-dependent chlorophyll biosynthesis pathway or another regulation system. Nesting within a group of gymnosperms known for the absence of the large inverted repeat regions (IRs), another unusual feature of the Parasitaxus plastome is the existence of a 9,256-bp long IR. Its short length and a gene composition that completely differs from those of IR-containing gymnosperms together suggest a regain of this critical, plastome structure-stabilizing feature. In sum, our findings highlight the particular path of lifestyle-associated reductive plastome evolution, where structural features might provide additional cues of a continued selection for plastome maintenance.


Assuntos
Cycadopsida/genética , Evolução Molecular , Genomas de Plastídeos , Sequências Repetidas Invertidas , Genes Essenciais , Fotossíntese/genética
11.
PLoS One ; 14(7): e0219272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276530

RESUMO

Plant life cycle begins with germination of seed below the ground. This is followed by seedling's development in the dark: skotomorphogenesis; and then a light-mediated growth: photomorphogenesis. After germination, hypocotyl grows rapidly to reach the sun, which involves elongation of shoot at the expense of root and cotyledons. Upon reaching ground level, seedling gets exposed to sunlight following a switch from the etiolated (skotomorphogenesis) to the de-etiolated (photomorphogenesis) stage, involving a series of molecular and physiological changes. Gymnosperms have evolved very differently and adopted diverse strategies as compared to angiosperms; with regards to response to light quality, conifers display a very mild high-irradiance response as compared to angiosperms. Absence of apical hook and synthesis of chlorophyll during skotomorphogenesis are two typical features in gymnosperms which differentiate them from angiosperms (dicots). Information regarding etiolation and de-etiolation processes are well understood in angiosperms, but these mechanisms are less explored in conifer species. It is, therefore, interesting to know how similar these processes are in conifers as compared to angiosperms. We performed a global expression analysis (RNA sequencing) on etiolated and de-etiolated seedlings of two economically important conifer species in Sweden to review the differentially expressed genes associated with the two processes. Based on the results, we propose that high levels of HY5 in conifers under DARK condition coupled with expression of few other genes associated with de-etiolation in angiosperms e.g. SPA, DET1 (lower expression under DARK) and CRY1 (higher expression under DARK), leads to partial expression of photomorphogenic genes in the DARK phenotype in conifers as displayed by absence of apical hook, opening of cotyledons and synthesis of chlorophyll.


Assuntos
Estiolamento/genética , Estiolamento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Traqueófitas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cotilédone/crescimento & desenvolvimento , Cycadopsida/metabolismo , Expressão Gênica/genética , Germinação/fisiologia , Hipocótilo/metabolismo , Luz , Plântula/crescimento & desenvolvimento , Sementes/metabolismo , Suécia
12.
Biol Lett ; 15(7): 20190114, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31288679

RESUMO

The morphology of the early ontogenetic stages of cycad foliage may help resolve the relationships between extinct to extant cycad lineages. However, prior to this study, fossil evidence of cycad seedlings was not known. We describe a compression fossil of cycad eophylls with co-occurring fully developed leaves of adult specimens from the early Palaeocene ( ca 63.8 Ma) Castle Rock flora from the Denver Basin, CO, USA and assign it to the fossil genus Dioonopsis (Cycadales) based on leaf morphology and anatomy. The new fossil seedling foliage is particularly important because fully differentiated pinnate leaves of adult plants and the eophylls belong to the same species based on shared epidermal micromorphology, therefore, increasing the number of morphological characteristics that can be used to place Dioonopsis phylogenetically. Significantly, the seedling fossil has a basic foliage structure that is very similar to seedlings of extant cycads, which is consistent with a cycadalean affinity of Dioonopsis. Nevertheless, the set of morphological characters in the seedling and adult specimens of Dioonopsis suggests a distant relationship between Dioonopsis and extant Dioon. This indicates that extinct lineages of cycads were present and widespread during the early Cenozoic (Palaeogene) coupled with the subordinate role of extant genera in the Palaeogene fossil record of cycads.


Assuntos
Cycadopsida , Fósseis , Filogenia , Folhas de Planta , Plântula
13.
Am J Bot ; 106(7): 1011-1020, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31294836

RESUMO

PREMISE: Male gametophytes of most seed plants deliver sperm to eggs via a pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern attributed to more effective haploid selection under stronger pollen competition. Paradoxically, whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms. Pollen tube polyploidy should initially accelerate PTGR because increased heterozygosity and gene dosage should increase metabolic rates. However, polyploidy should also independently increase tube cell size, causing more work which should decelerate growth. We asked how genome size changes have affected the evolution of seed plant PTGRs. METHODS: We assembled a phylogenetic tree of 451 species with known PTGRs. We then used comparative phylogenetic methods to detect effects of neo-polyploidy (within-genus origins), DNA content, and WGD history on PTGR, and correlated evolution of PTGR and DNA content. RESULTS: Gymnosperms had significantly higher DNA content and slower PTGR optima than angiosperms, and their PTGR and DNA content were negatively correlated. For angiosperms, 89% of model weight favored Ornstein-Uhlenbeck models with a faster PTGR optimum for neo-polyploids, whereas PTGR and DNA content were not correlated. For within-genus and intraspecific-cytotype pairs, PTGRs of neo-polyploids < paleo-polyploids. CONCLUSIONS: Genome size increases should negatively affect PTGR when genetic consequences of WGDs are minimized, as found in intra-specific autopolyploids (low heterosis) and gymnosperms (few WGDs). But in angiosperms, the higher PTGR optimum of neo-polyploids and non-negative PTGR-DNA content correlation suggest that recurrent WGDs have caused substantial PTGR evolution in a non-haploid state.


Assuntos
Evolução Biológica , Cycadopsida/fisiologia , Magnoliopsida/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Poliploidia , Tamanho do Genoma , Genoma de Planta , Filogenia
14.
Tree Physiol ; 39(10): 1675-1684, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211372

RESUMO

Understanding which structural and functional traits are linked to species' vulnerability to embolism formation (P50) may provide fundamental knowledge on plant strategies to maintain an efficient water transport. We measured P50, wood density (WD), mean conduit area, conduit density, percentage areas occupied by vessels, parenchyma cells (PATOT) and fibers (FA) on branches of angiosperm and gymnosperm species. Moreover, we compiled a dataset of published hydraulic and anatomical data to be compared with our results. Species more vulnerable to embolism had lower WD. In angiosperms, the variability in WD was better explained by PATOT and FA, which were highly correlated. Angiosperms with a higher P50 (less negative) had a higher amount of PATOT and total amount of nonstructural carbohydrates. Instead, in gymnosperms, P50 vs PATOT was not significant. The correlation between PATOT and P50 might have a biological meaning and also suggests that the causality of the commonly observed relationship of WD vs P50 is indirect and dependent on the parenchyma fraction. Our study suggests that angiosperms have a potential active embolism reversal capacity in which parenchyma has an important role, while in gymnosperms this might not be the case.


Assuntos
Cycadopsida , Embolia , Magnoliopsida , Humanos , Água , Madeira , Xilema
15.
Ann Bot ; 124(1): 149-164, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31045221

RESUMO

BACKGROUND AND AIMS: The gymnosperm order Gnetales, which has contentious phylogenetic affinities, includes three extant genera (Ephedra, Gnetum, Welwitschia) that are morphologically highly divergent and have contrasting ecological preferences: Gnetum occupies mesic tropical habitats, whereas Ephedra and Welwitschia occur in arid environments. Leaves are highly reduced in Ephedra, petiolate with a broad lamina in Gnetum and persistent and strap-like in Welwitschia. We investigate stomatal development and prepatterning stages in Gnetales, to evaluate the substantial differences among the three genera and compare them with other seed plants. METHODS: Photosynthetic organs of representative species were examined using light microscopy, scanning electron microscopy and transmission electron microscopy. KEY RESULTS: Stomata of all three genera possess lateral subsidiary cells (LSCs). LSCs of Ephedra are perigene cells derived from cell files adjacent to the stomatal meristemoids. In contrast, LSCs of Gnetum and Welwitschia are mesogene cells derived from the stomatal meristemoids; each meristemoid undergoes two mitoses to form a 'developmental triad', of which the central cell is the guard mother cell and the lateral pair are LSCs. Epidermal prepatterning in Gnetum undergoes a 'quartet' phase, in contrast with the linear development of Welwitschia. Quartet prepatterning in Gnetum resembles that of some angiosperms but they differ in later development. CONCLUSIONS: Several factors underpin the profound and heritable differences observed among the three genera of Gnetales. Stomatal development in Ephedra differs significantly from that of Gnetum and Welwitschia, more closely resembling that of other extant gymnosperms. Differences in epidermal prepatterning broadly reflect differences in growth habit between the three genera.


Assuntos
Cycadopsida , Magnoliopsida , Evolução Biológica , Filogenia , Sementes
17.
Zhongguo Zhong Yao Za Zhi ; 44(2): 265-269, 2019 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30989943

RESUMO

This study is based on the data analysis of medicinal plant resources and diversity collected from the fourth Chinese traditional medicine resource survey( pilot). Through the analysis of relevant data from 33 census pioneer plots in Guizhou province( area),a total of 265 families,1 432 genera and 5 296 species of medicinal resources were reported,including algae,fungi,lichens,mosses,a total of 43 genera and 35 families,57,48 families,120 genera and 453 species of ferns,gymnosperms 11 families,22 genera and 61 species,167 families,1 243 genera and 4 721 species of angiosperms,4 genera and 4 families four medicinal animals.Compared with the data related to the third survey of traditional Chinese medicine resources,the number of ferns,gymnosperms and angiosperms in the fourth survey has increased far more than that of the third survey. From the regional distribution of medicinal resources,the composition of the genus,the type of life,and the location of the medicine,the richness of the medicinal plant resources in Guizhou province is not only reflected in many types,but also in the variety of medicinal resources. These studies provide a scientific basis for vigorously developing the Chinese herbal medicine industry and the sustainably using medicinal plant resources in Guizhou province.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Plantas Medicinais/classificação , China , Cycadopsida , Gleiquênias , Magnoliopsida
18.
Biol Res ; 52(1): 25, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31018872

RESUMO

BACKGROUND: The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. RESULTS: These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10-3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. CONCLUSIONS: The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI → AG/SHP/STK → AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path.


Assuntos
Proteínas de Arabidopsis/genética , Cycadopsida/genética , Proteínas de Domínio MADS/genética , Magnoliopsida/genética , Proteínas Circadianas Period/genética , Filogenia , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta
19.
Genome Biol Evol ; 11(6): 1691-1705, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30924880

RESUMO

Acetyl-CoA carboxylase (ACCase) is the key regulator of fatty acid biosynthesis. In most plants, ACCase exists in two locations (cytosol and plastids) and in two forms (homomeric and heteromeric). Heteromeric ACCase comprises four subunits, three of them (ACCA-C) are nuclear encoded (nr) and the fourth (ACCD) is usually plastid encoded. Homomeric ACCase is encoded by a single nr-gene (ACC). We investigated the ACCase gene evolution in gymnosperms by examining the transcriptomes of newly sequenced Gnetum ula, combined with 75 transcriptomes and 110 plastomes of other gymnosperms. AccD-coding sequences are elongated through the insertion of repetitive DNA in four out of five cupressophyte families (except Sciadopityaceae) and were functionally transferred to the nucleus of gnetophytes and Sciadopitys. We discovered that, among the three genera of gnetophytes, only Gnetum has two copies of nr-accD. Furthermore, using protoplast transient expression assays, we experimentally verified that the nr-accD precursor proteins in Gnetum and Sciadopitys can be delivered to the plastids. Of the two nr-accD copies of Gnetum, one dually targets plastids and mitochondria, whereas the other potentially targets plastoglobuli. The distinct transit peptides, gene architectures, and flanking sequences between the two Gnetum accDs suggest that they have independent origins. Our findings are the first account of two distinctly targeted nr-accDs of any green plants and the most comprehensive analyses of ACCase evolution in gymnosperms to date.


Assuntos
Acetil-CoA Carboxilase/genética , Núcleo Celular/genética , Gnetum/enzimologia , Gnetum/genética , Plastídeos/genética , Cycadopsida/classificação , Cycadopsida/genética , Evolução Molecular , Gnetum/citologia , Mutagênese Insercional , Filogenia
20.
Nat Commun ; 10(1): 1235, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874563

RESUMO

Long-proboscid scorpionflies are enigmatic, mid-Mesozoic insects associated with gymnosperm pollination. One major lineage, Aneuretopsychina, consists of four families plus two haustellate clades, Diptera and Siphonaptera. One clade, Pseudopolycentropodidae, from mid-Cretaceous Myanmar amber, contains Parapolycentropus. Here, we newly establish Dualula, assigned to Dualulidae, constituting the fifth lineage. Parapolycentropus and Dualula lineages are small, two-winged, with unique siphonate mouthparts for imbibing pollination drops. A cibarial pump provides siphonal food inflow; in Dualula, the siphon base surrounds a hypopharynx housing a small, valved pump constricted to a narrow salivary duct supplying outgoing enzymes for food fluidization. Indirect evidence links long-proboscid mouthpart structure with contemporaneous tubulate ovulate organs. Direct evidence of gymnospermous Cycadopites pollen is associated with one Parapolycentropus specimen. Parapolycentropus and Dualula exhibit hind-wing reduction that would precede haltere formation, likely caused by Ultrabithorax. Distinctive, male Aneuretopsychina genitalia are evident from specimens in copulo, supplemented by mixed-sex individuals of likely male mating swarms.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Herbivoria/fisiologia , Insetos/fisiologia , Âmbar , Animais , Cycadopsida , Feminino , Insetos/anatomia & histologia , Masculino , Mianmar , Filogenia , Pólen , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA