Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Mais filtros










Filtros aplicados

Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 86(8): 565-570, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32325509

RESUMO

Bacopa monnieri is an Ayurvedic plant with rising interest in the pharmacological effects of its extract and constituents, including flavonoids, saponins, and triterpenes such as cucurbitacins, betulinic acid, and bacosine. The latter two compounds are isomeric 3-hydroxy lupenoic acids, which vary only in the arrangement of the carboxylic acid group and the methyl group at C-27 and C-28 and the orientation of the hydroxy group at C-3. In this study, we have reinvestigated the contents of betulinic acid and bacosine, respectively, in extracts from various commercially available B. monnieri powders and food supplements. To our surprise, HPLC-ion trap time-of-flight analyses identified only betulinic acid, but not bacosine, in all extracts under study, which was verified by GC-MS, HPLC-ELSD, 1D NMR (1H,13C), and 2D NMR (1H,1H COSY, 1H,13C HMBC, 1H,13C HSQC, 1H,1H NOESY) experiments. Moreover, it turned out that commercially available reference samples of bacosine were structurally identical with betulinic acid.


Assuntos
Bacopa , Saponinas , Triterpenos , Cromatografia Líquida de Alta Pressão , Extratos Vegetais
2.
Sci Total Environ ; 716: 136758, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32092818

RESUMO

Fungi mediated arsenic (As) stress modulation has emerged as an important strategy for the mitigation of As mediated stress management in plants for reducing As contamination to the food chain. In the present study, total of 45 fungal strains were isolated from the three As contaminated sites of West Bengal, India. These strains were morphologically different and inhibited variable As tolerance (10 to 5000 mg l-1As). Total 21 fungal isolates, tolerant up to 5000 mg l-1 AsV, were investigated for As removal (10 mg l-1 As) after 21 d of cultivation under laboratory conditions. The As bioaccumulation in fungal biomass ranged between 0.146 to 11.36 g kg-1 biomass. Range of volatilized As was between 0.05 to 53.39 mg kg-1 biomass. Most promising bioaccumulation and biovolatilization potential were observed in strains viz., 2WS1, 3WS1 and 2WS9. Strain 2WS1 showed highest As biovolatilization (53.39 mg kg-1 biomass) and was identified as Humicola sp. using ITS/5.8S rDNA gene sequencing. This is the first report of Humicola sp. having As biomethylation property. Best first 8 As biomethylating fungal strains were further tested for their As remediation and PGP potential in Bacopa monnieri plant grown in As contaminated soil (20 mg kg-1) in a pot experiment under greenhouse conditions. The highest leaf stem ratio and lowest As content in leaf tissues were observed in 2WS1 inoculated Bacopa monnieri plants. The presence of arsM gene in 2WS1 strain suggests As biovolatilization as possible bioremediation and As stress mitigation strategy of 2WS1. Therefore, application of this strain of Humicola sp. strain 2WS1 in As contaminated soils could be a potential and realistic mitigation strategy for reducing As contamination to cropping system coupled with enhanced productivity.


Assuntos
Bacopa , Arsênico , Biodegradação Ambiental , Índia , Solo , Poluentes do Solo
3.
Phytochemistry ; 172: 112276, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32058865

RESUMO

Bacopa monnieri (L.) is a reputed medicinal herb in traditional system of medicine of India, where it is used as nervine tonic to sharpen intellect and memory. This review discusses chemical characterization of dammarane triterpenoid glycosides which are well accepted for improvement in memory and for potential pharmacological activities. In addition, this review provides information on the chemical composition of specialized metabolites of B. monnieri and in the formulations by different analytical techniques. This comprehensive review covers literature up to 2019 with an emphasis on structural characterization of dammarane triterpenoid glycosides by spectroscopic techniques, chemical composition by analytical methods and pharmacological activities.


Assuntos
Bacopa , Triterpenos , Glicosídeos , Índia , Extratos Vegetais
4.
J Chromatogr Sci ; 57(10): 920-930, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31644789

RESUMO

The use of herbs as medicine is an ancient form of healthcare known to mankind. Standardization of herbal medicines is however a challenging task and is the major bottleneck in their acceptance as the primary therapeutic option. The aim of this study was to develop and validate a simple, rapid HPLC method for standardizing the mixture of extracts of three Medhya Rasayanas (neurotonic), Convolvulus pluricaulis, Withania somnifera and Bacopa monnieri. Simultaneous estimation of the respective bioactive markers of these plants viz., scopoletin, withaferin A, bacoside A 3, bacopaside II, jujubogenin and bacosaponin C has been reported for the first time. The method was developed using Waters Hybrid X-Bridge shield with BEH technology 2.5 µm, 4.6 × 75 mm column and validated according to ICH guidelines. The 20 minutes run time makes the method eco-friendly. The method was linear over a range of 12.5-400 ng/10 µL for scopoletin and 62.5-2,000 ng/10 µL for withaferin A, bacoside A 3, bacopaside II, jujubogenin and bacosaponin C with detection limits of 8.0, 48.3, 30.4, 40.7, 15.6 and 18.9 ng/10 µL and quantification limits of 24.5, 146.5, 92.2, 123.4, 47.4 and 57.4 ng/10 µL, respectively. The correlation coefficient for each analyte was >0.999. The intra-day and inter-day precision was <2%. These results confirmed the precision, accuracy and robustness of the proposed method.


Assuntos
Bacopa/química , Cromatografia Líquida de Alta Pressão/métodos , Convolvulus/química , Extratos Vegetais/análise , Withania/química , Biomarcadores/análise , Limite de Detecção , Modelos Lineares , Extratos Vegetais/química , Reprodutibilidade dos Testes , Escopoletina/análise , Triterpenos/análise , Vitanolídeos/análise
5.
Int J Phytoremediation ; 22(4): 343-352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31512506

RESUMO

Water scarcity and increasing salinity are the main limiting environmental factors directly affecting the establishment and development of agroecosystems. The objective of this study was to assess the capacity of the halophytes Bacopa monnieri (L.) Wettst and Sesuvium verrucosum Raf., to improve the chemical properties of a saline soil during a 240-day period in the field so as to subsequently examine their potential to associate with Zea mays in the previously desalinated surface. The treatments proposed were [T1 (reference soil sample), T2 (soil + B. monnieri), T3 (soil + S. verrucosum), and T4 (soil + B. monnieri + S. verrucosum)]. The results showed that the association of the species B monnieri and S. verrucosum has the potential to enhance the chemical characteristics of the severely saline and clayey soil, showing ECe reductions of 11.13-7.97 dS/m and pH of 7.84-7.42, as well as increase in soil porosity from 54.71% to 57.23%. It was also found that the association of these plants have a phytodesalination capacity of 1.21 t Na+ ha-1, this served to prepare the conditions for the growth of the Z. mays and generate yields of 8.5 t ha-1.


Assuntos
Aizoaceae , Bacopa , Biodegradação Ambiental , Sódio , Solo
6.
Environ Sci Pollut Res Int ; 27(6): 6078-6087, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863386

RESUMO

The freely and abundantly available amphibious plant Indian pennywort Bacopa monnieri (L.) Pennell was able to phytoremediate sewage (greywater) quickly and substantially in SHEFROL® ("sheet flow root level") bioreactors, achieving reductions in the levels of several indicator parameters: suspended solids, chemical oxygen demand, biological oxygen demand, nitrogen, phosphorus, zinc, copper, nickel, and manganese to the extents of about 90%, 76-77%, 80%, 65%, 55%, 56%, 42%, and 41%, respectively at hydraulic retention times of just 6 h. As these indicators of primary, secondary, and tertiary treatments were achieved simultaneously in a single reactor compartment, the system presented in this paper promises to be simple, rapid, and economical, in achieving significant treatment of greywater.


Assuntos
Bacopa , Biodegradação Ambiental , Eliminação de Resíduos Líquidos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Esgotos
7.
Arch Biochem Biophys ; 676: 108153, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31622587

RESUMO

Ayurveda is the medicinal science, dealing with utilization of naturally available plant products for treatment. A wide variety of neuroprotective herbs have been reported in Ayurveda. Brahmi, Bacopa monnieri is a nootropic ayurvedic herb known to be effective in neurological disorders from ancient times. Numerous approaches including natural and synthetic compounds have been applied against Alzheimer's disease. Amyloid-ß and Tau are the hallmarks proteins of several neuronal dysfunctions resulting in Alzheimer's disease. Tau is a microtubule-associated protein known to be involved in progression of Alzheimer's disease. The generation of reaction oxygen species, increased neuroinflammation and neurotoxicity are the major physiological dysfunctions associated with Tau aggregates, which leads to dementia and behavioural deficits. Bacoside A, Bacoside B, Bacosaponins, Betulinic acid, etc; are the bioactive component of Brahmi belonging to various chemical families. Each chemical component known have its significant role in neuroprotection. The neuroprotective properties of Brahmi and its bioactive components including reduction of ROS, neuroinflammation, aggregation inhibition of Amyloid-ß and improvement of cognitive and learning behaviour. Here on basis of earlier studies we hypothesize the inhibitory role of Brahmi against Tau-mediated toxicity. The overall studies have concluded that Brahmi can be used as a lead formulation for treatment of Alzheimer's disease and other neurological disorders.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Bacopa/química , Medicina Ayurvédica , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Extratos Vegetais/uso terapêutico
8.
Molecules ; 24(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426532

RESUMO

A major goal in the discovery of bioactive natural products is to rapidly identify active compound(s) and dereplicate known molecules from complex biological extracts. The conventional bioassay-guided fractionation process can be time consuming and often requires multi-step procedures. Herein, we apply a metabolomic strategy merging multivariate data analysis and multi-informative molecular maps to rapidly prioritize bioactive molecules directly from crude plant extracts. The strategy was applied to 59 extracts of three Bacopa species (B. monnieri, B. caroliniana and B. floribunda), which were profiled by UHPLC-HRMS2 and screened for anti-lipid peroxidation activity. Using this approach, six lipid peroxidation inhibitors 1‒6 of three Bacopa spp. were discovered, three of them being new compounds: monnieraside IV (4), monnieraside V (5) and monnieraside VI (6). The results demonstrate that this combined approach could efficiently guide the discovery of new bioactive natural products. Furthermore, the approach allowed to evidence that main semi-quantitative changes in composition linked to the anti-lipid peroxidation activity were also correlated to seasonal effects notably for B. monnieri.


Assuntos
Bacopa/química , Produtos Biológicos/química , Peroxidação de Lipídeos/efeitos dos fármacos , Manosídeos/química , Manosídeos/farmacologia , Animais , Encéfalo , Química Encefálica , Misturas Complexas/química , Manosídeos/isolamento & purificação , Metabolômica/métodos , Análise Multivariada , Extratos Vegetais/química , Análise de Componente Principal , Ratos , Substâncias Reativas com Ácido Tiobarbitúrico/análise
9.
Biol Pharm Bull ; 42(8): 1384-1393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366873

RESUMO

We previously demonstrated that Bacopa monnier (L.) WETTST. extract (BME) ameliorated cognitive dysfunction in animal models of dementia by enhancing synaptic plasticity-related signaling in the hippocampus and protecting cholinergic neurons in the medial septum. To further clarify the pharmacological features and availability of BME as a novel anti-dementia agent, we investigated whether BME affects neuronal repair using a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampus. Mice pretreated with TMT (2.8 mg/kg, intraperitoneally (i.p.)) on day 0 were given BME (50 mg/kg, per os (p.o.)) once daily for 15-30 d. Cognitive performance of the animals was elucidated twice by the object location test and modified Y maze test on days 17-20 (Phase I) and days 32-35 (Phase II) or by the passive avoidance test on Phase II. TMT impaired hippocampus-dependent spatial working memory and amygdala-dependent fear-motivated memory. The administration of BME significantly prevented TMT-induced cognitive deficits. The protective effects of BME on the spatial memory deficits were confirmed by Nissl staining of hippocampal tissues and propidium iodide staining of organotypic hippocampal slice cultures. Immunohistochemical studies conducted on days 17 and 32 revealed that thirty days of treatment with BME increased the number of 5-bromo-2'-deoxyuridine (BrdU)-immunopositive cells in the dentate gyrus region of TMT-treated mice, whereas fifteen days of treatment with BME had no effect. These results suggest that BME ameliorates TMT-induced cognition dysfunction mainly via protecting the hippocampal neurons from TMT-induced hippocampal lesions and partly via promoting neuroregeneration in the dentate gyrus regions.


Assuntos
Bacopa , Disfunção Cognitiva/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Compostos de Trimetilestanho
10.
J Histotechnol ; 42(3): 128-136, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31379302

RESUMO

The liver is an important organ that plays a vital role in homeostasis maintenance and regulation. Any liver damage or injury caused by drugs or chemicals is called hepatotoxicity. Isoniazid and rifampin are drugs used separately to treat tuberculosis but have unique side effects and potential hepatotoxicity. The metabolism of isoniazid (INH) and rifampin (RIF) takes place in liver hence hepatotoxicity is the main cause of their continuous use. Bacoside was obtained from the plant Bacopa monnieri, a dammarene type triterpenoid saponin, found distributed throughout India. Bacoside has been used as a nerve tonic, a free radical scavenger, and antioxidant. It is known that the combined INH-RIF induced hepatotoxicity can be antagonized by maintaining hepatocyte membrane integrity in rats. Silymarin, an herbal drug, and its component silybin were reported to work as lipid peroxidation inhibitors and antioxidants which scavenge free radicals. Due to minimal toxicity and no adverse drug interactions, Silymarin is used to treat various medically confirmed hepatic disorders. The aim of this study was to evaluate the beneficial effect of Bacoside against INH- and RIF-induced toxicity in livers of Wistar albino rats. Four experimental groups of rats were used to study four parameters; bodyweight, liver enzyme markers, liver antioxidant, and liver histopathology. INH- and RIF-treated rats showed abnormalities in liver markers which were normalized by Bacoside and that seems similar to the normal control and Silymarin-treated groups. Thus, the current study demonstrated the hepatoprotective effect of Bacoside against INH- and RIF-induced toxicity in Wistar albino rats.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Substâncias Protetoras/farmacologia , Saponinas/farmacologia , Silimarina/farmacologia , Triterpenos/farmacologia , Animais , Antioxidantes/análise , Bacopa , Peso Corporal/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Feminino , Isoniazida/toxicidade , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Ratos , Ratos Wistar , Rifampina/toxicidade
11.
Molecules ; 24(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208086

RESUMO

B. monnieri extract (BME) is an abundant source of bioactive compounds, including saponins and flavonoids known to produce vasodilation. However, it is unclear which components are the more effective vasodilators. The aim of this research was to investigate the vasorelaxant effects and mechanisms of action of saponins and flavonoids on rat isolated mesenteric arteries using the organ bath technique. The vasorelaxant mechanisms, including endothelial nitric oxide synthase (eNOS) pathway and calcium flux were examined. Saponins (bacoside A and bacopaside I), and flavonoids (luteolin and apigenin) at 0.1-100 µM caused vasorelaxation in a concentration-dependent manner. Luteolin and apigenin produced vasorelaxation in endothelial intact vessels with more efficacy (Emax 99.4 ± 0.7 and 95.3 ± 2.6%) and potency (EC50 4.35 ± 1.31 and 8.93 ± 3.33 µM) than bacoside A and bacopaside I (Emax 83.6 ± 2.9 and 79.9 ± 8.2%; EC50 10.8 ± 5.9 and 14.6 ± 5.4 µM). Pretreatment of endothelial intact rings, with L-NAME (100 µM); an eNOS inhibitor, or removal of the endothelium reduced the relaxant effects of all compounds. In K+-depolarised vessels suspended in Ca2+-free solution, these active compounds inhibited CaCl2-induced contraction in endothelial denuded arterial rings. Moreover, the active compounds attenuated transient contractions induced by 10 µM phenylephrine in Ca2+-free medium containing EGTA (1 mM). Thus, relaxant effects occurred in both endothelial intact and denuded vessels which signify actions through both endothelium and vascular smooth muscle cells. In conclusion, the flavonoids have about twice the potency of saponins as vasodilators. However, in the BME, there is ~20 × the amount of vaso-reactive saponins and thus are more effective.


Assuntos
Bacopa/química , Artérias Mesentéricas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Extratos Vegetais/química , Ratos , Vasodilatadores/química
12.
Trials ; 20(1): 345, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182153

RESUMO

BACKGROUND: Due to an ageing population in Australia there has been an increase in the number of older adults with subjective cognitive impairment (SCI), a self-reported decline in cognitive function associated with an increased risk of mild cognitive impairment and dementia. There is no current, recommended treatment for SCI; therefore, the effectiveness of a supplement approved by the Therapeutic Goods Association that has the potential to enhance cognitive function in an at-risk cohort should be tested. The primary aim of this proposed research is to determine the efficacy of 6 months of treatment with BioCeuticals Cognition Support Formula® (containing Bacopa monniera (brahmi), Ginkgo biloba, Panax ginseng and alpha-lipoic acid) on cognition in older adults with SCI (utilising the CogState® one card learning and identification tests as co-primary outcome measures of visual short-term memory and attention; mean speed (ms), accuracy (%), and total number of hits, misses, and anticipations) compared with placebo. The secondary aims are to assess an improvement in other cognitive domains (executive functioning, processing speed, and working memory), evaluate safety, adverse effects, and determine efficacy on mood, fatigue, and neurocognition. It is expected that improvements across the study timepoints in the co-primary outcomes in the active treatment group (compared with placebo) will be evident. METHOD: One-hundred and twenty participants will be recruited for the randomised, double-blind, placebo-controlled study. Participants will be randomly assigned to one of the treatment groups (active or placebo) at a 1:1 ratio, and will be required to complete a series of cognitive (using CogState®), mood (using the Depression, Anxiety, Stress Scale (DASS-42) and Short Health Anxiety Inventory (SHAI)), and fatigue (using the Functional Assessment of Chronic Illness Therapy Fatigue Scale (FACIT-F)) tasks at baseline (0 months), the midpoint (3 months), and the endpoint (6 months). These tasks will be evaluated between timepoints (baseline vs. midpoint, midpoint vs. endpoint, and baseline vs. endpoint). Neurocognition will be measured by electroencephalography at baseline and at the endpoint in half of the participants. Adverse effects will be documented over the 6-month trial period. DISCUSSION: This is the first study to test the efficacy of Cognition Support Formula® on cognition in older adults with SCI. As people with SCI have an increased risk of dementia, and there are limited treatments options for this population, it is important to assess a supplement that has the potential to enhance cognitive function. TRIAL REGISTRATION: Universal Trial Number (UTN), U1111-1196-9548. Australian New Zealand Clinical Trials Registry, ACTRN12617000945325 . Registered on 30 June 2017.


Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Fitoterapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Bacopa , Suplementos Nutricionais , Método Duplo-Cego , Eletroencefalografia , Humanos , Avaliação de Resultados em Cuidados de Saúde , Panax , Extratos Vegetais/administração & dosagem , Ácido Tióctico/administração & dosagem
13.
Complement Ther Med ; 44: 68-82, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31126578

RESUMO

Bacopa monnieri (L.) - (BM) is a perennial, creeping herb which is widely used in traditional ayurvedic medicine as a neural tonic to improve intelligence and memory. Research into the biological effects of this plant has burgeoned in recent years, promising its neuroprotective and memory boosting ability among others. In this context, an extensive literature survey allows an insight into the participation of numerous signaling pathways and oxidative mechanism involved in the mitigation of oxidative stress, along with other indirect mechanisms modulated by bioactive molecules of BM to improve the cognitive action by their synergistic potential and cellular multiplicity mechanism. This multi-faceted review describes the novel mechanisms that underlie the unfounded but long flaunted promises of BM and thereby direct a way to harness this acquired knowledge to develop innovative approaches to manipulate its intracellular pathways.


Assuntos
Bacopa/química , Cognição/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Humanos , Medicina Ayurvédica/métodos , Memória/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
14.
BMC Microbiol ; 19(1): 98, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096902

RESUMO

BACKGROUND: Exploration of microbes isolated from north western Himalayas for bioactive natural products. RESULTS: A strain of Trichoderma lixii (IIIM-B4) was isolated from Bacopa monnieri L. The ITS based rDNA gene sequence of strain IIIM-B4 displayed 99% sequence similarity with different Trichoderma harzianum species complex. The highest score was displayed for Hypocrea lixii strain FJ462763 followed by H. nigricans strain NBRC31285, Trichoderma lixii strain CBS 110080, T. afroharzianum strain CBS124620 and Trichoderma guizhouense BPI:GJS 08135 respectively. Position of T. lixii (IIIM-B4) in phylogenetic tree suggested separate identity of the strain. Microbial dynamics of T. lixii (IIIM-B4) was investigated for small peptides. Medium to long chain length peptaibols of 11 residue (Group A), 14 residue (Group B) and 17 residue (Group C) were identified using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectrometer. Optimization is undeniably a desideratum for maximized production of desirable metabolites from microbial strain. Here optimization studies were carried out on T. lixii (IIIM-B4) using different growth media through Intact Cell Mass Spectrometry (ICMS). A multifold increase was obtained in production of 11 residue peptaibols using rose bengal medium. Out of these, one of them named as Tribacopin AV was isolated and sequenced through mass studied. It was found novel as having unique sequence Ac-Gly-Leu-Leu-Leu-Ala-Leu-Pro-Leu-Aib-Val-Gln-OH. It was found to have antifungal activity against Candida albicans (25 µg/mL MIC). CONCLUSION: In this study, we isolated a strain of T. lixii (IIIM-B4) producing medium and long chain peptaibols. One of them named as Tribacopin AV was found novel as having unique sequence Ac-Gly-Leu-Leu-Leu-Ala-Leu-Pro-Leu-Aib-Val-Gln-OH, which had antifungal properties.


Assuntos
Bacopa/microbiologia , Peptaibols/biossíntese , Trichoderma/fisiologia , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Candida albicans/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Endófitos/genética , Endófitos/fisiologia , Espectrometria de Massas , Peptaibols/farmacologia , Filogenia , Análise de Sequência de Proteína , Trichoderma/genética
15.
Environ Sci Pollut Res Int ; 26(12): 12071-12079, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30827024

RESUMO

Highly bioavailable plant phospholipid complex that can reverse aluminum maltolate (AlM)-induced toxicity is not yet reported. Hence, the present study was planned to investigate the impact of oxidative stress and apoptotic changes provoked by Al and ameliorative role of Bacopa phospholipid complex (BPC) in albino rats. The levels of antioxidant enzymes such as superoxide dismutase (SOD), catalase activity (CAT), glutathione peroxidase (GPx), and thiobarbituric acid-reactive substance (TBA-RS) were measured and immunohistochemistry analysis of apoptotic markers, Bax and Bcl-2, was done from the four brain regions such as the hippocampus, cerebral cortex, cerebellum, and medulla oblongata. The levels of antioxidant enzymes and apoptotic markers that were decreased on AlM induction showed a significant increase in their levels, almost as observed in the control, when treated with BPC and Bm. Our results indicate that both BPC and Bm showed a therapeutic effect against AlM toxicity; however, it was found that the therapeutic potential of BPC was more pronounced than Bm against AlM-induced neurotoxicity.


Assuntos
Antioxidantes/farmacologia , Encéfalo/fisiologia , Compostos Organometálicos/toxicidade , Extratos Vegetais/farmacologia , Pironas/toxicidade , Animais , Bacopa/química , Encéfalo/efeitos dos fármacos , Catalase/metabolismo , Cerebelo/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosfolipídeos , Ratos , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico
16.
Biomed Pharmacother ; 111: 1417-1428, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841457

RESUMO

Evidence has revealed a high degree of comorbidity of excessive alcohol intake and abstinence anxiety-like behavior. The ethanolic extracts of Bacopa monnieri (BME) are used in Indian traditional medicines for the management of alcoholic disorders. However, the underlying mechanism(s) associated with the influence of BME on alcohol abstinence-induced anxiety-like behavior have not been adequately addressed. Therefore, the present study was planned to examine the beneficial effects of BME in alcohol abstinence-induced anxiety-like behavior and the underlying mechanism of action subsequent to long-term voluntary drinking of alcohol. For the assessment of the effects of BME, Wistar rats were exposed to voluntary ingestion of 4.5%, 7.5% and 9% v/v alcohol for 15 days. The doses (100, 200, and 500 mg/kg) of BME and diazepam (2 mg/kg) were administered via gavage for three consecutive days in the alcohol abstinence period on the days 16, 17, and 18. The behavioral studies were conducted employing the elevated plus maze test (EPM), and light-dark test on day 18 to determine the effects of BME and diazepam in the ethanol abstinence-induced anxiety-like behavior. Alcohol biomarkers like ALT, AST, ALP, GGT, and MCV were estimated using commercially available kits. The expression of Gabra1, Gabra2, Gabra3, Gabra4, Gabra5 genes of the GABAA receptors subunits in the hippocampus as well as amygdala were also examined by reverse-transcription quantitative polymerase chain reaction. The HPLC analysis demonstrated that BME contained 9.9% bacoside-A as a major component. The results revealed that alcohol abstinence group depicted a reduction in the time spent on the open arms, numbers of entries in the open as well as closed arms in EPM test and similarly decrease in latency to the dark chamber, time spent in light chamber and numbers of transitions in LDT. Further, BME at the doses of 200 mg/kg and 500 mg/kg alleviated anxiety-like behavior which was escalated during alcohol abstinence. However, BME (100 mg/kg) exhibited insignificant protection against alcohol abstinence-induced syndrome. The escalated levels of alcohol-intake biomarkers were also reversed by BME at the dose of 200 mg/kg and 500 mg/kg. The down-regulation of Gabra1, Gabra4, and Gabra5 gene expression following alcohol abstinence were also reversed with a higher dose of BME (200 and 500 mg/kg) treatment. These results show that BME abrogates anxiety-like behavior by modulating alcohol markers and Gabra1, Gabra4, Gabra5 gene expression of GABAA receptor signaling pathway in rats.


Assuntos
Ansiedade/tratamento farmacológico , Bacopa/química , Etanol/efeitos adversos , Extratos Vegetais/farmacologia , Receptores de GABA-A/metabolismo , Abstinência de Álcool , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Biomarcadores/metabolismo , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
17.
Cent Nerv Syst Agents Med Chem ; 19(1): 57-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30644349

RESUMO

BACKGROUND: Parkinson's Disease (PD) is characterized by alterations in cerebellum and basal ganglia functioning with corresponding motor deficits and neuropsychiatric symptoms. Involvement of oxidative dysfunction has been implicated for the progression of PD, and environmental neurotoxin exposure could influence such behavior and psychiatric pathology. Assessing dietary supplementation strategies with naturally occurring phytochemicals to reduce behavioral anomalies associated with neurotoxin exposure would have major clinical importance. The present investigation assessed the influence of Bacopa monneri (BM) on behaviors considered to reflect anxiety-like state and motor function as well as selected biochemical changes in brain regions of mice chronically exposed to ecologically relevant herbicide, paraquat (PQ). MATERIALS & METHODS: Male mice (4-week old, Swiss) were daily provided with oral supplements of standardized BM extract (200 mg/kg body weight/day; 3 weeks) and PQ (10 mg/kg, i.p. three times a week; 3 weeks). RESULTS: We found that BM supplementation significantly reversed the PQ-induced reduction of exploratory behavior, gait abnormalities (stride length and mismatch of paw placement) and motor impairment (rotarod performance). In a separate study, BM administration prevented the reduction in dopamine levels and reversed cholinergic activity in brain regions important for motor (striatum) pathology. Further, in mitochondria, PQ-induced decrease in succinate dehydrogenase (SDH) activity and energy charge (MTT reduction), was restored with BM supplementation. CONCLUSION: These findings suggest that BM supplementation mitigates paraquat-induced behavioral deficits and brain oxidative stress in mice. However, further investigations would enable us to identify specific molecular mechanism by which BM influences behavioural pathology.


Assuntos
Bacopa , Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Fenótipo , Animais , Encéfalo/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo
18.
Metab Brain Dis ; 34(2): 505-518, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30604025

RESUMO

Inflammation is considered as an early event in the development of Alzheimer's disease (AD) that precedes the formation of Aß plaques and neurofibrillary tangles. Therefore, strategies aimed at attenuating inflammation by phytochemicals may be a potential therapeutic intervention against AD. The present study was designed to evaluate if colchicine-induced inflammation and Aß production could be prevented by Bacopa monnieri (BM) supplementation. Dementia was induced by a single intracerebroventicular injection of colchicine (15 µg/5 µl), whereas, BM extract was administered orally (50 mg/kg body weight, daily) for 15 days. Assessment of cognitive functions using Morris water maze revealed deficits in colchicine administered animals. This was accompanied by significant increase in oxidative stress in terms of accentuated ROS and NO production. Expression of pro-inflammatory cytokines (IL-6, TNF-α) and chemokine (MCP-1) increased in the brain regions. Furthermore, COX-2 and iNOS expression also increased significantly in the brain regions of colchicine-administered animals. In addition, BACE-1 activity increased in the colchicine treated animals, which was accompanied by enhanced Aß production. On the other hand, BM supplementation was able to improve cognitive functions, suppress Aß formation by reducing BACE-1 activity. Inflammatory and oxidative stress markers were attenuated in the brain regions of BM supplemented animals. Taken together, the findings reveal that BM reverses colchicine-induced dementia by its anti-inflammatory and anti-oxidant action suggesting that it may be an effective therapeutic intervention to ameliorate progression of AD.


Assuntos
Anti-Inflamatórios/farmacologia , Bacopa/metabolismo , Demência/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Colchicina/farmacologia , Demência/induzido quimicamente , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Ratos Wistar
19.
Comput Biol Chem ; 78: 359-366, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30677568

RESUMO

Plant based lead compounds have been historically incredible as a source of therapeutic agents for various complex disorders including Alzheimer's disease (AD). AD is one of the leading neurodegenerative disorder in which the underlying risk factors remain largely unclear and presently, there is no disease modifying treatment available. Despite its potential, to date only few compounds have entered for clinical trials. Herein, we described the identification of plant based lead compounds for treatment of AD through an integrative approach of pharmacokinetics and structure bioinformatics approach. In particular we performed screening of lead compounds from 3 traditional medicinal plants namely Withania somnifera, Bacopa monnieri and Morus alba, which are known to have potential for treatment of neurodegenerative disease. We retrieved a total of 210 plant based compounds of which 21 compounds were screened based on their pharmacokinetic properties. Further, Docking study against 7 known AD associated targets were carried out to identify the binding sites and direct interacting residues. In addition we investigate the stable and reliable binding mechanism of top such plant compounds against 3 targets through molecular docking followed by Molecular Dynamic(MD) simulation. The results obtained in the study revealed that 3 drug compounds namely Morusin (MRSN), Withanone (WTHN) and 27-Hydroxywithanolide B (HWTHN) were identified as putative lead compounds against mono amine oxidase (MAOB), Beta-secretase 1(BACE1) and phosphodiesterase 4D.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Biologia Computacional , Flavonoides/uso terapêutico , Extratos Vegetais/uso terapêutico , Triterpenos/uso terapêutico , Bacopa/química , Flavonoides/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Morus/química , Extratos Vegetais/química , Triterpenos/química , Withania/química
20.
Microbiol Res ; 218: 87-96, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30454662

RESUMO

The modification of rhizosphere microbial diversity and ecological processes are of rising interest as shifting in microbial community structure impacts the mutual role of host-microbe interactions. Nevertheless, the connection between host-microbial community diversity, their function under biotic stress in addition to their impact on plant performances is poorly understood. The study was designed with the aim to analyze the tripartite interactions among Chitiniphilus sp., Streptomyces sp. and their combination with indigenous rhizospheric microbial population of Bacopa monnieri for enhancing the plant growth and bacoside A content under Meloidogyne incognita stress. Overall, plants treated with the microbial combination recorded enhanced growth as illustrated by significantly higher biomass (2.0 fold), nitrogen uptake (1.8 fold) and bacoside A content (1.3 fold) along with biocontrol efficacy (58.5%) under nematode infected field. The denaturing gradient gel electrophoresis (DGGE) fingerprints of 16S-rDNA revealed that microbial inoculations are major initiators of bacterial community structure in the plant rhizosphere. Additionally, the plants treated with microbial combination showed maximum diversity viz., Shannon's (3.29), Margalef's (4.21), and Simpson's (0.96) indices. Likewise the metabolic profiling data also showed a significant variation among the diversity and evenness indices upon microbial application on the native microflora. We surmise that the application of beneficial microbes in combinational mode not only helped in improving the microbial community structure but also successfully enhanced plant and soil health under biotic stress.


Assuntos
Bacopa , Betaproteobacteria/metabolismo , Doenças das Plantas/parasitologia , Streptomyces/metabolismo , Tylenchoidea/crescimento & desenvolvimento , Animais , Bacopa/crescimento & desenvolvimento , Bacopa/microbiologia , Bacopa/parasitologia , Eletroforese em Gel de Gradiente Desnaturante , Microbiota , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Saponinas/metabolismo , Microbiologia do Solo , Estresse Fisiológico/fisiologia , Simbiose/fisiologia , Triterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA