Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Phytochemistry ; 173: 112314, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32120118

RESUMO

The genus Ocotea is one of the largest and most economically explored in the Lauraceae family. However, its current industrial use is limited by the difficult identification of Ocotea species. At present, the genus is botanically considered a complex since accurate classification is very difficult to achieve based on taxonomic characteristics. As chemophenetics can aid in Ocotea species identification processes, we propose to evaluate the chemical data in several studies of Lauraceae species published between 1906 and 2019 in order to provide insights of the identification issue of matrix which DNA material or full morphological characteristics may not be readily available. Several alkaloids and lignoids have been found to be specifically synthesized by Ocotea species, enabling their usage in species identification by targeted and untargeted metabolomic approaches. The multivariate analysis of alkaloid, lignoid and flavonoid profiles allowed the characterization of subsets of species, the differentiation of chemical profile based on plant parts (leaves and branches), and to elucidate specific biomarkers for species. The previous chemophenetic model was contradicted by our data using statistical tools, such as HCPC, which allowed clustering adjustments based not only in the presence or absence of two single chemical classes. Chemophenetic study has proved to be a reliable tool in the enhancement of the identification and comprehension of this genus and the family. Here, the current status, pitfalls and future perspectives in Ocotea species metabolomic characterization will be presented.


Assuntos
Alcaloides , Lauraceae , Ocotea , Extratos Vegetais , Folhas de Planta
2.
Nat Prod Res ; 34(6): 876-879, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30488722

RESUMO

The chemical composition of essential oils (EO) from bark and leaf of P. zhennan was identified by GC-MS. The compounds of α-calacorene, τ-cadinol, ß-eudesmol and d-cadinene were found in the essential oils from both bark and leaf. The UV-Vis spectra results indicated the EO could completely absorbed the UV light at the wavelength range of 200-370 nm, revealing that EO had great potential as additives for manufacturing UV light blocking products. The radical DPPH scavenging activity assay showed that both the bark and leaf EO possessed strong DPPH radical scavenging activity of 90.25% and 82.10% respectively, which provides an important theoretical guiding in exploiting the value of P. zhennan bark and leaf.[Formula: see text].


Assuntos
Antioxidantes/isolamento & purificação , Lauraceae/química , Óleos Voláteis/química , Antioxidantes/farmacologia , Depuradores de Radicais Livres , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química , Análise Espectral , Terpenos/análise , Raios Ultravioleta
3.
J Asian Nat Prod Res ; 22(1): 52-60, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30897964

RESUMO

One new aporphine named tavoyanine A (1), along with four known aporphines laetanine (2), roemerine (3), laurolitsine (4), and boldine (5), and one morphinandienone type sebiferine (6) were isolated from the leaves of Phoebe tavoyana (Meissn.) Hook f. (Lauraceae). The isolation was achieved by chromatographic techniques, and the structural elucidation was performed via spectral methods. This paper also reports the antiplasmodial activity of roemerine (3), laurolitsine (4), boldine (5), and sebiferine (6). The results showed that 3-6 have a potent inhibitory activity against the growth of Plasmodium falciparum 3D7 clone, with IC50 values of 0.89, 1.49, 1.65, and 2.76 µg/ml, respectively.


Assuntos
Alcaloides , Antimaláricos , Aporfinas , Lauraceae , Estrutura Molecular , Extratos Vegetais , Folhas de Planta , Plasmodium falciparum
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117463, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31421349

RESUMO

Real-time process quality control of ramulus cinnamomi (cassia twig) is still a challenge in pharmaceutical industry. Rapid critical quality attribute (CQA) determination of ramulus cinnamomi is essential for quality control. Microscale thermophoresis (MST) was used to investigate the CQA of ramulus cinnamomi by the interaction with biomacromolecule. There was a good affinity between cinnamaldehyde and human serum albumin (HSA) with Ka as 2.1722×103mol/L. It was an excellent combination of similarity to ibuprofen with same binding force as discovered as hydrogen bond and van der Waals force. Furthermore, regarding cinnamaldehyde as CQA, on-line near-infrared was used to monitor pilot extraction process of ramulus cinnamomi combined with high performance liquid chromatography (HPLC). Quantitative model was established with Rpre2 as 0.9798 and RMSECV as 0.0993, suggesting the NIR model was so robust and accurate for pilot process quality control. This method provided a perfect guideline for rapid CQA determination and real-time process quality control of Chinese materia medica (CMM) based on a vital CQA.


Assuntos
Acroleína/análogos & derivados , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Acroleína/análise , Acroleína/química , Acroleína/metabolismo , Acroleína/normas , Humanos , Lauraceae , Limite de Detecção , Modelos Lineares , Materia Medica/normas , Ligação Proteica , Controle de Qualidade , Reprodutibilidade dos Testes , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Temperatura
5.
PLoS One ; 14(11): e0224622, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31675370

RESUMO

Lindera Thunb. (Lauraceae) consists of approximately 100 species, mainly distributed in the temperate and tropical regions of East Asia. In this study, we report 20 new, complete plastome sequences including 17 Lindera species and three related species, Actinodaphne lancifolia, Litsea japonica and Sassafras tzumu. The complete plastomes of Lindera range from 152,502 bp (L. neesiana) to 154,314 bp (L. erythrocarpa) in length. Eleven small inversion (SI) sites are documented among the plastomes. Six of the 11 SI sites are newly reported and they locate in rpoB-trnC, psbC-trnS, petA-psbJ, rpoA and ycf2 regions. The distribution patterns of SIs are useful for species identification. An average of 83 simple sequence repeats (SSRs) were detected in each plastome. The mono-SSRs accounted for 72.7% of total SSRs, followed by di- (12.4%), tetra- (9.4%), tri- (4.2%), and penta-SSRs (1.3%). Of these SSRs, 64.6% were distributed in an intergenic spacer (IGS) region. In addition, 79.8% of the SSRs are located in a large single copy (LSC) region. In contrast, almost no SSRs are distributed in inverted repeat (IR) regions. The SSR loci are useful to identifying species but the phylogenetic value is low because the majority of them show autapomorphic status or highly homoplastic characteristics. The nucleotide diversity (Pi) values also indicated the conserved nature of the IR region compared to LSC and small single copy (SSC) regions. Five spacer regions with high Pi values, trnH-psbA, petA-psbJ and ndhF-rpl32, rpl32-trnL and Ψycf1-ndhF, have a potential use for the molecular identification study of Lindera and related species. Lindera species form a paraphyletic group in the plastome tree because of the inclusion of related genera such as Actinodaphne, Laurus, Litsea and Neolitsea. A former member of tribe Laureae, Sassafras, forms a clade with the tribe Cinnamomeae. The SIs do not affect the phylogenetic relationship of Laureae. This result indicated that ancient plastome captures may have contribute to the mixed intergeneric relationship of Laureae. Alternatively, the result may indicate that the morphological characters defined the genera of Lauraceae originated for several times.


Assuntos
Sequências Repetidas Invertidas/genética , Lauraceae/genética , Plastídeos/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Lindera/genética , Filogenia , Análise de Sequência de DNA
6.
BMC Res Notes ; 12(1): 649, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590691

RESUMO

OBJECTIVES: This study examines the rationale, if any, behind combining the extracts from the fruits of Alchornea cordifolia and Pterocarpus santalinoides and aerial parts of Cassytha filiformis in the traditional treatment of diarrhoegenic bacterial infections. RESULTS: Four diarrhoegenic bacterial isolates: Salmonella typhi, Shigellae dysenteriae, Escherichia coli and Staphylococcus aureus were used and their antibiotic susceptibility screening showed that they were multi-antibiotic resistant. The extracts exhibited activity against all the test isolates with minimum inhibitory concentration values ranging from 3.125 to 12.5 mg/mL. From the checkerboard assay, the fractional inhibitory concentration indices showed that C. filiformis has antagonistic and indifference activities in combination with either P. santalinoides or A. cordifolia. This showed that the combination of extracts from the fruits of A. cordifolia and P. santalinoides and aerial parts of C. filiformis is counterproductive and invalidates any claim for positive results in the management of diarrhoegenic bacterial infections.


Assuntos
Antibacterianos/farmacologia , Euphorbiaceae/química , Lauraceae/química , Extratos Vegetais/farmacologia , Pterocarpus/química , Antibacterianos/isolamento & purificação , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Frutas/química , Testes de Sensibilidade Microbiana , Componentes Aéreos da Planta/química , Extratos Vegetais/isolamento & purificação , Salmonella typhi/efeitos dos fármacos , Shigella dysenteriae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
7.
J Chromatogr A ; 1608: 460422, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31500882

RESUMO

Nectandra leucantha (Lauraceae) is a tree indigenous to the tropical Atlantic forests of Brazil, one of the most biodiverse flora hotspots worldwide. This plant species contains high concentrations of neolignan and dehydrodieugenol derivatives that express significant in-vitro activities against various parasite strains. These activities are however responsible for severe tropical human infections, such as Leishmaniasis (Leishmania spp.) and Chagas disease (Trypanosoma cruzi), which have been classified by the World Health Organization (WHO) as Neglected Tropical Diseases (NTDs). In order to optimize the isolation process for these target metabolites, n-hexane extract of the leaves was separated by means of semi-preparative high performance countercurrent chromatography (HPCCC) and scale-up spiral-coil countercurrent chromatography (sp-CCC) systems. Several biphasic solvent mixtures were evaluated for their partitioning effects on neolignans, resulting in the selection of an optimized system n-hexane - ethylacetate - methanol - water (7:3:7:3, v/v/v/v). The chromatographic experiments on the HPCCC and sp-CCC were run in the head-to-tail mode with 500 mg and 16 g injections, respectively. For specific and multiple metabolite detection, the recovered CCC-fractions were off-line injected, in the sequence of recovery, to an electrospray mass-spectrometry (ESI-MS/MS) device. A projection of the single ion traces of the target compounds, in the positive ionization mode at a scan range of m/z 100-1500, located chromatographic areas where the co-elution effects occurred and pure target metabolites were present. Five major target neolignans were specifically detected, which enabled the accurate pooling of CCC-fractions for an optimum recovery of the metabolites. The direct comparison of the performance characteristics of the two CCC-devices, with very different mechanical designs was achieved by the conversion of the time axis into a partition ratio (KD) separation scale. As a result, the compound specific KD-elution values of the target neolignan were determined in high precision, while the comparison of the calculated separation factor (α) and resolution factor (RS) values revealed a superior separation performance for the HPCCC system. Also, the reproducibility of detected metabolites in the two CCC experiments was confirmed by small variations (ΔKD ±0.1). Neolignan target compounds with anti-parasite activities were successfully isolated in the 100 mg to 4 g range in a single lab-scale countercurrent chromatographic process step.


Assuntos
Distribuição Contracorrente/métodos , Lauraceae/química , Lignanas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Brasil , Cromatografia Líquida de Alta Pressão/métodos , Eugenol/análogos & derivados , Eugenol/análise , Eugenol/isolamento & purificação , Lignanas/análise , Extratos Vegetais/análise , Folhas de Planta/química
8.
Ying Yong Sheng Tai Xue Bao ; 30(9): 2941-2948, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31529868

RESUMO

To explore the photosynthetic adaptation of Phoebe bournei to different light conditions, two-year-old P. bournei seedlings were grown under three light regimes (full light, shading rate 50% and 78% of full light). The chlorophyll contents, leaf gas exchange and chlorophyll fluorescence of P. bournei were measured after six-month treatment. The results showed that the contents of chlorophyll a, chlorophyll b, chlorophyll (a+b) and carotenoids in leaves were in a descending order of shading rate 78% > shading rate 50% > full light. There was no significant difference of chlorophyll a/b between natural and shade treatments. The shading treatment reduced light compensation point (LCP), but increased light saturation point (LSP) and apparent quantum yield (AQY), suggesting that plants could utilize both the weak light and the high light. Maximum net photosynthetic rate (Pn max), dark respiration rate (Rd), and maximum electron transfer rate (Jmax) increased under the shading treatment. There was significant difference between natural and shade treatment in net photosynthetic rate (Pn), stomatal conductance to CO2(gsc), intercellular CO2 concentration (Ci), and mesophyll conductance (gm). Pn and gm of different light regimes were sorted from the highest to the lowest as shading rate 78% > shading rate 50% > full light. gsc under shading rate 78% was higher than that under full light. Ci under shading rate 50% and 78% were lower than that under full light. Actual photochemical efficiency of PS2 (Fv'/Fm'), quantum yields of PS2 (ΦPS2), and electron transport rate (J) of P. bournei leaves were significantly higher under shading rate 78% than those under shading rate 50% and full light. In conclusion, P. bournei could increase Pn by increasing chlorophyll content, AQY, J, gsc, and gm under shade condition.


Assuntos
Clorofila/metabolismo , Lauraceae/fisiologia , Folhas de Planta/metabolismo , Clorofila/análise , Clorofila A , Fotossíntese/fisiologia , Folhas de Planta/química , Plântula , Luz Solar
9.
Planta Med ; 85(13): 1054-1072, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31261421

RESUMO

The Lauraceae family is predominantly found in Asia and in the rainforests of the Americas, and consists mostly of aromatic trees. Being an essential oil producer, this family is used in the food, pharmaceutical, and cosmetic industries. This work presents a systematic review of the chemical composition and bioactivity of the essential oils from the Lauraceae family. Medline, Scielo, Web of Science, Lilacs, and Scopus were employed to identify articles published between 2000 and 2018, using "Lauraceae", "essential oil", and "biological activity" as key words. From 177 studies identified, 53 met the inclusion criteria. These studies indicated a predominance of the compounds ß-caryophyllene and 1,8-cineole in Lauraceae species, and highlighted the antioxidant, antifungal, antibacterial, and anti-inflammatory activities. Essential oils extracted from this family thus have high potential for pharmacological applications.


Assuntos
Lauraceae/química , Óleos Vegetais/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Óleos Vegetais/química
10.
PLoS One ; 14(6): e0219100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242263

RESUMO

Dugout canoes are boats made from a single tree trunk. Even with the modernization of fishing, they are still made and used for artisanal fishing on the coast of southern and southeastern Brazil and in other regions of the world. Various tree species are used to construct these canoes and choosing a species is related to characteristics of the location, available raw materials and purpose of the boat. Our objective was to better understand the variation in dugout canoes in relation to tree species, tree size and fishing use, over time, along a coastal strip of southern and southeastern Brazil within the Atlantic Forest domain. We interviewed 53 artisans and analyzed 358 canoes that ranged from 1 to around 200 years old. Schizolobium parahyba is currently used the most. In the past, species of the family Lauraceae (Nectandra sp. / Ocotea sp.) were frequently used, as well as Cedrela fissilis and Ficus sp. The size of the canoes varied based on time, coastal region, environment where the boat is used (exposed or sheltered) and type of fishing. The average size of recent canoes was smaller than older canoes for more common species (S. parahyba and C. fissilis), reflecting changes in the vegetation of the biome over time, both in the species and size of individuals available. Latitudinal variation can also influence the availability of tree species along the studied regions. An increase in environmental monitoring has contributed to a decline in constructing dugout canoes, resulting in the use of fiberglass canoes and other motorized boats. Although canoe size varied based on region, location and use, today some of the older canoes represent large trees of the past and pieces of Atlantic Forest history.


Assuntos
Navios/métodos , Árvores/crescimento & desenvolvimento , Brasil , Cedrela/crescimento & desenvolvimento , Ecossistema , Fabaceae/crescimento & desenvolvimento , Florestas , Humanos , Lauraceae/crescimento & desenvolvimento , Clima Tropical
11.
Sci Total Environ ; 677: 272-280, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31059871

RESUMO

Although many studies have reported the negative effects of elevated O3 on plant physiological characteristics, the influence of elevated O3 on below-ground processes and soil microbial functioning is less studied. In this study, we examined the effects of elevated O3 on soil properties, soil microbial biomass, as well as microbial community composition using high-throughput sequencing. Throughout one growing season, one-year old seedlings of two important endemic trees in subtropical China: Taxus chinensis (Pilger) Rehd. var. chinensis, and Machilus ichangensis Rehd. Et Wils, were exposed to charcoal-filtered air (CF as control), 100 nl l-1 (E100) or 150 nl l-1 (E150) O3-enriched air, in open top chambers (OTCs). We found that only higher O3 exposure (E150) significantly decreased soil microbial biomass carbon and nitrogen in M. ichangensis, and the contents of organic matter were significantly decreased by E150 in both tree species. Although both levels of O3 exposure decreased NO3-N in T. chinensis, only E150 increased NO3-N in M. ichangensis, and there were no effects of O3 on NH4-N. Moreover, elevated O3 elicited changes in soil microbial community structure and decreased fungal diversity in both M. ichangensis and T. chinensis. However, even though O3 exposure reduced bacterial diversity in M. ichangensis, no effect of O3 exposure on bacterial diversity was detected in soil grown with T. chinensis. Our results showed that elevated O3 altered the abundance of bacteria and fungi in general, and in particular reduced nitrifiers and increased the relative abundance of some fungal taxa capable of denitrification, which may stimulate N2O emissions. Overall, our findings indicate that elevated O3 not only impacts the soil microbial community structure, but may also exert an influence on the functioning of microbial communities.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Carbono/metabolismo , Microbiota/efeitos dos fármacos , Nitrogênio/metabolismo , Ozônio/efeitos adversos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fungos/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Lauraceae/efeitos dos fármacos , Lauraceae/crescimento & desenvolvimento , Microbiologia do Solo , Taxus/efeitos dos fármacos , Taxus/crescimento & desenvolvimento
12.
Braz J Microbiol ; 50(3): 583-592, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119710

RESUMO

The occurrence of pests and diseases can affect plant health and productivity in ecosystems that are already at risk, such as tropical montane cloud forests. The use of naturally occurring microorganisms is a promising alternative to mitigate forest tree fungal pathogens. The objectives of this study were to isolate rhizobacteria associated with five Lauraceae species from a Mexican tropical montane cloud forest and to evaluate their antifungal activity against Fusarium solani and F. oxysporum. Fifty-six rhizobacterial isolates were assessed for mycelial growth inhibition of Fusarium spp. through dual culture assays. Thirty-three isolates significantly reduced the growth of F. solani, while 21 isolates inhibited that of F. oxysporum. The nine bacterial isolates that inhibited fungal growth by more than 20% were identified through 16S rDNA gene sequence analysis; they belonged to the genera Streptomyces, Arthrobacter, Pseudomonas, and Staphylococcus. The volatile organic compounds (VOC) produced by these nine isolates were evaluated for antifungal activity. Six isolates (Streptomyces sp., Arthrobacter sp., Pseudomonas sp., and Staphylococcus spp.) successfully inhibited F. solani mycelial growth by up to 37% through VOC emission, while only the isolate INECOL-21 (Pseudomonas sp.) inhibited F. oxysporum. This work provides information on the microbiota of Mexican Lauraceae and is one of the few studies identifying forest tree-associated microbes with inhibitory activity against tree pathogens.


Assuntos
Antifúngicos/farmacologia , Bactérias/metabolismo , Fusarium/efeitos dos fármacos , Lauraceae/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/isolamento & purificação , Fusarium/crescimento & desenvolvimento , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
13.
Fitoterapia ; 136: 104179, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31121252

RESUMO

Essential oils, mixtures of volatile compounds, are targets of research for new antimicrobial drugs. In order to verify the potential from species of the Nectandra genus, the present study evaluated the essential oils from Nectandra amazonum, Nectandra cuspidata, Nectandra gardineri, Nectandra hihua and Nectandra megapotamica to prospect samples with high concentration of a component and its antibacterial, antibiofilm and anti-Trichomonas vaginalis activities. The essential oils from the leaves and barks were extracted by steam distillation and analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The concentrations of 10 and 100 µg/mL of the essential oil were evaluated and the inhibition of bacterial growth and biofilm formation were measured, while for the evaluation of anti-T. vaginalis trophozoite viability, the concentrations from 7.8 to 1000 µg/mL were tested. Seventy-three compounds were identified from essential oils, highlighted bicyclogermacrene (up to 49.9%), elemicin (up to 42.4%), intermedeol (up to 58.2%), (E)-asarone (up to 45.9%) and (+)-α-bisabolol (up to 93.7%). The essential oil from N. megapotamica leaves presented 93.7% of (+)-α-bisabolol and demonstrated the high capacity of inhibition of the biofilm formation, in particular, against Staphylococcus aureus methicillin resistant (MRSA) and Pseudomonas aeruginosa. This sample also had significant activity against T. vaginalis (IC50 of 98.7 µg/mL) and demonstrated cytotoxic and hemolytic effects in Vero cells and human erythrocytes. In general, the Nectandra genus revealed high chemical variability and a N. megapotamica specimen accumulated a compound on high concentration with great potential for biotechnological exploration as a new antibiofilm and anti-T. vaginalis.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Lauraceae/química , Óleos Voláteis/farmacologia , Sesquiterpenos/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Brasil , Chlorocebus aethiops , Eritrócitos/efeitos dos fármacos , Humanos , Sesquiterpenos Monocíclicos , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Folhas de Planta/química , Células Vero
14.
Toxicol Appl Pharmacol ; 375: 64-80, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075342

RESUMO

Nectandra grandiflora Ness (Lauraceae) essential oil (EO) main constituent, the sesquiterpenoid (+)-dehydrofukinone (DHF), has sedative and anticonvulsant effects through GABAergic mechanisms. Other DHF-related sesquiterpenoids have been identified in the EO, such as, dehydrofukinone epoxide (DFX), eremophil-11-en-10-ol (ERM) and selin-11-en-4-α-ol (SEL). However, the neuronal effects of these compounds in mammals remain unknown. Therefore, the aim of this study was to evaluate the anxiolytic potential of the N. grandiflora EO and the isolated compounds in in mice. For this purpose, mice were administered orally with vehicle, 10, 30 or 100 mg/kg EO, DHF, DFX, ERM or SEL or 1 mg/kg diazepam. Locomotion and ethological parameters in the open field (OF) and elevated plus maze (EPM) were recorded. We also examined the effect of DFX, ERM and SEL on the membrane potential and calcium influx in synaptosomes, and the presence of the compounds in the cortical tissue using gas chromatography. EOs and isolated compounds reduced anxiety-related parameters in the EPM (open arms time and entries, end activity, head dipping) and OF (center time and entries, total rearing, unprotected rearing, sniffing, grooming) without alter ambulation or induce sedation. Flumazenil (2 mg/kg, i.p.) altered the anxiolytic-like effect of all treatments and vanished the DFX, ERM and SEL-induced changes in membrane potential. However, FMZ did not blocked the DFX-, ERM- and SEL-induced inhibition of calcium influx. Therefore, our results suggest that N. grandiflora EO and isolated compounds induced anxiolytic-like effect in mice due to positive modulation of GABAa receptors and/or inhibition of neuronal calcium influx.


Assuntos
Ansiedade/tratamento farmacológico , GABAérgicos/farmacologia , Lauraceae/química , Óleos Voláteis/farmacologia , Óleos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Animais , Comportamento Animal , GABAérgicos/química , Masculino , Camundongos , Estrutura Molecular , Atividade Motora , Óleos Voláteis/química , Óleos Vegetais/química , Análise de Componente Principal , Sesquiterpenos/química
15.
Biomolecules ; 9(3)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901829

RESUMO

Investigating the influence of seasonal variations on biological activities is important for pharmacological studies and metabolic engineering. Therefore, this study was conducted to determine the variation of the chemical composition of essential oils obtained from Nectandra megapotamica leaves, collected at different stages of plant development, as well as its influence on the biological activities. A total of 38 compounds were identified that accounted for 97⁻99.2% of the chemical composition of the oils. Major differences were observed in the monoterpenic fraction, representing 5.1% of the compounds identified in the productive rest phase to 37.1% in the blooming phase. Bicyclogermacrene and germacrene D were the predominant compounds identified in the oil of all collections. Furthermore, limonene, ß-pinene, and spathulenol were identified predominantly in the samples of blooming and fruiting phases. The oils exhibited significant antichemotactic activity and different effects in scavenging the radical 2,2-diphenyl-1-picrylhydrazyl. Variations were also observed in the antifungal activity, with the minimum inhibitory concentrations ranging from 125 to 500 µg/mL. These results demonstrate the influence of monoterpenes, primarily limonene, α-pinene, and ß-pinene, on the bioactivities of the oil. Studies investigating the variations in the chemical composition of essential oil may offer a strategy to produce a compound or a group of compounds of interest to industries with a specific pharmacological focus.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Fungos/efeitos dos fármacos , Lauraceae/química , Monoterpenos/farmacologia , Óleos Voláteis/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Engenharia Metabólica , Testes de Sensibilidade Microbiana , Monoterpenos/química , Óleos Voláteis/isolamento & purificação , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade
16.
Bioorg Chem ; 86: 665-673, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30826627

RESUMO

The new alkene lactone, (3E)-5,6-dihydro-5-(hydroxymethyl)-3-docdecylidenefuran-3(4H)-one (1), named majoranolide B, and three alkene lactones known as majorenolide (2), majoranolide (3) and majorynolide (4) were obtained from the aerial parts of Persea fulva (Lauraceae). The structures were elucidated in light of extensive spectroscopic analysis, including 1D, 2D NMR (1H, 13C, 1H-1H-COSY, HMBC and HSQC) and HR-ESI-MS. These compounds were screened for their in vitro antiproliferative activity in rat C6 glioma and astrocyte cells using MTT assay and in silico by molecular docking against targets that play a central role in controlling glioma cell cycle progression. Majoranolide (3) is the most active compound with IC50 6.69 µM against C6 glioma cells, followed by the compounds 1 (IC50 9.06 µM), 2 (IC50 12.04 µM) and 4 (IC50 41.90 µM). The alkene lactones 1-3 exhibited lower toxicity in non-tumor cells when compared to glioma cells. Molecular docking results showed that majoranolide establishes hydrogen bonds with all targets through its α,ß-unsaturated-γ-lactone moiety, whereas the long-chain alkyl group binds by means of several hydrophobic bonds. In the present study, it can be concluded from the anti-proliferative activity of isolates against C6 glioma cells that lactone constituents from P. fulva could have a great potential for the control of C6 glioma cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Lactonas/farmacologia , Lauraceae/química , Simulação de Acoplamento Molecular , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Lactonas/química , Lactonas/isolamento & purificação , Estrutura Molecular , Folhas de Planta/química , Ratos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Alkaloids Chem Biol ; 82: 147-304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30850031

RESUMO

This chapter presents an overview of the chemistry and pharmacology of the alkaloids found in species of the Lauraceae family. The occurrence of alkaloids from Lauraceae species as well as their chemical structures is summarized in informative and easy-to-understand tables. Within the Lauraceae family, the genera Ocotea (195), Litsea (180), Cryptocarya (133), and Neolitsea (110) have led to the greater number of publications regarding alkaloids content. Valuable and comprehensive information about the structure of these alkaloids is provided. The alkaloids of the aporphine type, found in 22 of the 23 genera, represent the predominant group in this family. Many of the isolated alkaloids exhibit unique structures. From plants of this family, 22 different types of skeletons have been isolated, among them only the purine alkaloids are classified as pseudoalkaloids, and the types phenethylamines, phenethylcinnamides, and phthalidoisoquinoline are classified as protoalkaloids. The chapter is presented as a contribution for the scientific community, mainly to enable the search for alkaloids in species belonging to the Lauraceae family.


Assuntos
Alcaloides/química , Lauraceae/química , Alcaloides/biossíntese , Lauraceae/metabolismo , Estrutura Molecular
19.
Fungal Genet Biol ; 125: 84-92, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30716558

RESUMO

Raffaelea lauricola is an invasive fungal pathogen and symbiont of the redbay ambrosia beetle (Xyleborus glabratus) that has caused widespread mortality to redbay (Persea borbonia) and other Lauraceae species in the southeastern USA. We compare two genomes of R. lauricola (C2646 and RL570) to seven other related Ophiostomatales species including R. aguacate (nonpathogenic close relative of R. lauricola), R. quercus-mongolicae (associated with mortality of oaks in Korea), R. quercivora (associated with mortality of oaks in Japan), Grosmannia clavigera (cause of blue stain in conifers), Ophiostoma novo-ulmi (extremely virulent causal agent of Dutch elm disease), O. ulmi (moderately virulent pathogen that cause of Dutch elm disease), and O. piceae (blue-stain saprophyte of conifer logs and lumber). Structural and functional annotations were performed to determine genes that are potentially associated with disease development. Raffaelea lauricola and R. aguacate had the largest genomes, along with the largest number of protein-coding genes, genes encoding secreted proteins, small-secreted proteins, ABC transporters, cytochrome P450 enzymes, CAZYmes, and proteases. Our results indicate that this large genome size was not related to pathogenicity but was likely lineage specific, as the other pathogens in Raffaelea (R. quercus-mongolicae and R. quercivora) had similar genome characteristics to the Ophiostoma species. A diverse repertoire of wood-decaying enzymes were identified in each of the genomes, likely used for toxin neutralization rather than wood degradation. Lastly, a larger number of species-specific, secondary metabolite, synthesis clusters were identified in R. lauricola suggesting that it is well equipped as a pathogen, which could explain its success as a pathogen of a wide range of lauraceous hosts.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico/genética , Ophiostomatales/genética , Doenças das Plantas/genética , Proteínas Fúngicas/classificação , Espécies Introduzidas , Lauraceae/microbiologia , Anotação de Sequência Molecular , Ophiostomatales/patogenicidade , Doenças das Plantas/microbiologia , Especificidade da Espécie
20.
J Nat Prod ; 82(2): 249-258, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30668111

RESUMO

Type 2 diabetes is a chronic multifactorial disease affecting more than 425 million people worldwide, and new selective α-glucosidase inhibitors with fewer side effects are urgently needed. In this study, a crude ethyl acetate extract of Machilus litseifolia was fractionated by solid-phase extraction using C18 cartridges to give a fraction enriched in α-glucosidase inhibitors. Subsequent microfractionation and bioassaying of the eluate by high-performance liquid chromatography (HPLC) using a complementary pentafluorophenyl column allowed construction of a high-resolution α-glucosidase inhibition profile (biochromatogram). This was used to target high-performance liquid chromatography-photodiode array detection-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-PDA-HRMS-SPE-NMR) analysis toward α-glucosidase inhibitors. This led to the identification of 13 dicoumaroylated flavonol rhamnosides, of which seven (8, 10, 12a, 12b, 16, 17, and 18) are reported for the first time, and two lignans, of which one (5) is reported for the first time. IC50 values of isolated compounds toward α-glucosidase range from 5.9 to 35.3 µM, which is 8 to 91 times lower than the IC50 value of 266 µM measured for the reference compound acarbose.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Lauraceae/química , Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Espectroscopia de Ressonância Magnética , Extratos Vegetais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA