Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.912
Filtrar
1.
BMC Med Genet ; 21(1): 93, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375772

RESUMO

BACKGROUND: Pathogenic SLC6A1 variants have been reported in patients with myoclonic-atonic epilepsy (MAE). NOTCH1, encoding a member of the Notch family of proteins, is known to be associated with aortic valve disease. The PRIMPOL variant has only been identified in Chinese patients with high myopia. Exome sequencing analysis now allows the simultaneous detection of multiple genetic etiologies for patients with complicated clinical features. However, the presence of three Mendelian disorders in one patient supported by their respective pathogenic variants and clinical phenotypes is very rare. CASE PRESENTATION: Here, we report a 4-year-old Chinese boy who presented with MAE, delayed language, borderline intellectual disability (ID), mildly impaired social skills and attention deficit hyperactivity disorder (ADHD). He also had mild aortic valve stenosis and high myopia. Using whole-exome sequencing (WES), we identified three variants: (1) SLC6A1, NM_003042.4: c.881-883del (p.Phe294del), (2) NOTCH1, NM_017617.5:c.1100-2A > G and (3) PRIMPOL, NM_152683.4:c.265 T > G (p.Tyr89Asp). Parental Sanger sequencing confirmed that SLC6A1 and NOTCH1 variants were de novo, whereas the PRIMPOL variant was inherited from the father who also had high myopia. Furthermore, the PRIMPOL variant was absent from the genomes of the paternal grandparents, and thus was also a de novo event in the family. All three variants are classified as pathogenic. CONCLUSION: The SLC6A1 variant could explain the features of MAE, delayed language, borderline ID, impaired social skills and ADHD in this patient, whereas the features of aortic valve stenosis and high myopia of the patient may be explained by variants in NOTCH1 and PRIMPOL, respectively. This case demonstrated the utility of exome sequencing in uncovering the multiple pathogenic variants in a patient with complicated phenotypes due to the blending of three Mendelian disorders.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsia Generalizada/genética , Predisposição Genética para Doença , Miopia/genética , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Pré-Escolar , DNA Primase/genética , DNA Polimerase Dirigida por DNA/genética , Epilepsias Mioclônicas/patologia , Epilepsia Generalizada/patologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Testes Genéticos , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Enzimas Multifuncionais/genética , Mutação/genética , Miopia/patologia , Receptor Notch1/genética , Sequenciamento Completo do Exoma
3.
Proc Natl Acad Sci U S A ; 117(12): 6836-6843, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32144139

RESUMO

Visuomotor impairments characterize numerous neurological disorders and neurogenetic syndromes, such as autism spectrum disorder (ASD) and Dravet, Fragile X, Prader-Willi, Turner, and Williams syndromes. Despite recent advances in systems neuroscience, the biological basis underlying visuomotor functional impairments associated with these clinical conditions is poorly understood. In this study, we used neuroimaging connectomic approaches to map the visuomotor integration (VMI) system in the human brain and investigated the topology approximation of the VMI network to the Allen Human Brain Atlas, a whole-brain transcriptome-wide atlas of cortical genetic expression. We found the genetic expression of four genes-TBR1, SCN1A, MAGEL2, and CACNB4-to be prominently associated with visuomotor integrators in the human cortex. TBR1 gene transcripts, an ASD gene whose expression is related to neural development of the cortex and the hippocampus, showed a central spatial allocation within the VMI system. Our findings delineate gene expression traits underlying the VMI system in the human cortex, where specific genes, such as TBR1, are likely to play a central role in its neuronal organization, as well as on specific phenotypes of neurogenetic syndromes.


Assuntos
Canais de Cálcio/genética , Córtex Motor/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas/genética , Proteínas com Domínio T/genética , Córtex Visual/fisiopatologia , Adulto , Idoso , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Mapeamento Encefálico , Estudos de Coortes , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia , Desempenho Psicomotor , Percepção Visual
4.
Biochim Biophys Acta Proteins Proteom ; 1868(4): 140363, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954927

RESUMO

Neuroserpin (NS) is predominantly expressed in brain and inhibits tissue-type plasminogen activator (tPA) with implications in brain development and memory. Nature of conformational change in pathological variants in strand 6B and helix B of NS that cause a relatively mild to severe epilepsy (and/or dementia) remains largely elusive. MD simulation with wild type (WT) NS, strand 6B and helix B variants indicated that substitution in this region affects the conformation of the strands 5B, 5A and reactive centre loop. Therefore, we designed variants of NS in strand 6B (I46D and F48S) and helix B (A54F, L55A and L55P) to investigate their role in tPA inhibition mechanism and propensity to aggregate. An interaction analysis showed disturbance of a hydrophobic patch centered at strands 5B, 6B and helix B in I46D and F48S but not in A54F, L55A, L55P and WT NS. Purified I46D, F48S and L55P variants showed decrease in fluorescence emission intensity but have similar α-helical content, however results of A54F and L55A were comparable to WT NS. Analysis of tPA inhibition showed marginal effect on A54F and L55A variant with tPA-NS complex formation. In contrast, I46D, F48S and L55P variants showed massive decrease in tPA inhibition, with no tPA-NS complex formation. Analysis of native PAGE under under polymerization condition showed prompt conversion of I46D, F48S and L55P to latent conformation but not A54F and L55A variants. Identification of these novel conformational changes will aid in the understanding of variable clinical phenotype of shutter region NS variants and other serpins.


Assuntos
Neuropeptídeos/química , Serpinas/química , Epilepsias Mioclônicas/genética , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação , Neuropeptídeos/genética , Neuropeptídeos/isolamento & purificação , Neuropeptídeos/metabolismo , Fenótipo , Polimerização , Agregados Proteicos , Conformação Proteica , Conformação Proteica em alfa-Hélice , Serpinas/genética , Serpinas/isolamento & purificação , Serpinas/metabolismo , Ativador de Plasminogênio Tecidual/antagonistas & inibidores
5.
Eur J Paediatr Neurol ; 24: 134-141, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31879226

RESUMO

OBJECTIVE: To evaluate the capability of children with Dravet syndrome to generate brain γ-oscillatory activity in response to auditory steady-state stimulation. METHODS: Fifty-one subjects were included: 13 with Dravet syndrome with SCN1A gene alterations, 26 with non-Dravet epilepsies and 12 healthy controls. Responses to auditory steady-state stimulation elicited with a chirp-modulated tone between 1 and 120 Hz were collected in subjects and compared across groups. RESULTS: Subjects with Dravet syndrome showed weak or no responses in the 1-120 Hz frequency range. Healthy controls showed oscillatory responses following the frequency of the modulation that were maximal in the low (30-70 Hz) and high (80-120) γ-ranges both, in the power and inter-trial coherence estimates. Non-Dravet epileptic children showed differences in the auditory responses when compared with the healthy controls but were able to generate oscillatory evoked activities following the frequency-varying stimulation. CONCLUSIONS: The ability to generate brain γ-oscillatory activity of children with Dravet in response to a chirp-modulated auditory stimulus is highly impaired, is not due to epilepsy and is consistent with the Nav1.1 channel dysfunction affecting interneuron activity seen in Dravet mouse models. SIGNIFICANCE: The reported deficits in the brain oscillatory activity evoked by chirp modulated tones in children with Dravet is compatible with Dravet syndrome disease mechanisms and constitutes a potential biomarker for future disease-modifying interventions.


Assuntos
Encéfalo/fisiopatologia , Epilepsias Mioclônicas/fisiopatologia , Ritmo Gama/fisiologia , Estimulação Acústica , Adolescente , Animais , Criança , Pré-Escolar , Epilepsias Mioclônicas/genética , Feminino , Humanos , Masculino , Camundongos
6.
Epileptic Disord ; 21(6): 585-589, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843733

RESUMO

Benign spasms of infancy (BSI), previously described as benign non-epileptic infantile spasms or benign myoclonus of early infancy, are non-epileptic movements manifesting during the first year of life and spontaneously resolving in the second year of life. BSI are characterized by spasms typically lasting 1-2 seconds, involving, to varying degrees, the head, neck, trunk, shoulders and upper extremities. Ictal and interictal EEG recordings are normal. BSI are not associated with developmental regression and do not require treatment. Distinction between BSI and infantile epileptic disorders, such as epileptic spasms or myoclonic epilepsy of infancy, can be challenging given the clinical similarities. Moreover, interictal EEGs can be normal in all conditions. Epileptic spasms and myoclonic epilepsy require timely treatment to improve neurodevelopmental outcomes. We describe a six-month-old infant presenting with spasm-like movements. His paroxysms as well as a positive family history for epileptic spasms were in keeping with a likely diagnosis of West syndrome. Surprisingly, ictal video-EEG did not reveal epileptiform activity, and suggested a diagnosis of BSI. We emphasize that ictal video-EEG is the gold standard for classification of infantile paroxysms as epileptic or non-epileptic, thereby avoiding over-treatment for BSI and facilitating timely targeted treatment of infantile epilepsies. [Published with video sequences].


Assuntos
Epilepsias Mioclônicas/diagnóstico , Espasmos Infantis/diagnóstico , Diagnóstico Diferencial , Epilepsias Mioclônicas/fisiopatologia , Humanos , Lactente , Masculino , Espasmos Infantis/fisiopatologia
8.
Lancet ; 394(10216): 2243-2254, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31862249

RESUMO

BACKGROUND: Dravet syndrome is a rare, treatment-resistant developmental epileptic encephalopathy characterised by multiple types of frequent, disabling seizures. Fenfluramine has been reported to have antiseizure activity in observational studies of photosensitive epilepsy and Dravet syndrome. The aim of the present study was to assess the efficacy and safety of fenfluramine in patients with Dravet syndrome. METHODS: In this randomised, double-blind, placebo-controlled clinical trial, we enrolled children and young adults with Dravet syndrome. After a 6-week observation period to establish baseline monthly convulsive seizure frequency (MCSF; convulsive seizures were defined as hemiclonic, tonic, clonic, tonic-atonic, generalised tonic-clonic, and focal with clearly observable motor signs), patients were randomly assigned through an interactive web response system in a 1:1:1 ratio to placebo, fenfluramine 0·2 mg/kg per day, or fenfluramine 0·7 mg/kg per day, added to existing antiepileptic agents for 14 weeks. The primary outcome was the change in mean monthly frequency of convulsive seizures during the treatment period compared with baseline in the 0·7 mg/kg per day group versus placebo; 0·2 mg/kg per day versus placebo was assessed as a key secondary outcome. Analysis was by modified intention to treat. Safety analyses included all participants who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov with two identical protocols NCT02682927 and NCT02826863. FINDINGS: Between Jan 15, 2016, and Aug 14, 2017, we assessed 173 patients, of whom 119 patients (mean age 9·0 years, 64 [54%] male) were randomly assigned to receive either fenfluramine 0·2 mg/kg per day (39), fenfluramine 0·7 mg/kg per day (40) or placebo (40). During treatment, the median reduction in seizure frequency was 74·9% in the fenfluramine 0·7 mg/kg group (from median 20·7 seizures per 28 days to 4·7 seizures per 28 days), 42·3% in the fenfluramine 0·2 mg/kg group (from median 17·5 seizures per 28 days to 12·6 per 28 days), and 19·2% in the placebo group (from median 27·3 per 28 days to 22·0 per 28 days). The study met its primary efficacy endpoint, with fenfluramine 0·7 mg/kg per day showing a 62·3% greater reduction in mean MCSF compared with placebo (95% CI 47·7-72·8, p<0·0001); fenfluramine 0·2 mg/kg per day showed a 32·4% reduction in mean MCSF compared with placebo (95% CI 6·2-52·3, p=0·0209). The most common adverse events (occurring in at least 10% of patients and more frequently in the fenfluramine groups) were decreased appetite, diarrhoea, fatigue, lethargy, somnolence, and decreased weight. Echocardiographic examinations revealed valve function within the normal physiological range in all patients during the trial and no signs of pulmonary arterial hypertension. INTERPRETATION: In Dravet syndrome, fenfluramine provided significantly greater reduction in convulsive seizure frequency compared with placebo and was generally well tolerated, with no observed valvular heart disease or pulmonary arterial hypertension. Fenfluramine could be an important new treatment option for patients with Dravet syndrome. FUNDING: Zogenix.


Assuntos
Epilepsias Mioclônicas/tratamento farmacológico , Fenfluramina/uso terapêutico , Convulsões/tratamento farmacológico , Inibidores de Captação de Serotonina/uso terapêutico , Administração Oral , Adolescente , Anticonvulsivantes/uso terapêutico , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Fenfluramina/administração & dosagem , Fenfluramina/efeitos adversos , Humanos , Masculino , Estudos Observacionais como Assunto , Placebos , Inibidores de Captação de Serotonina/administração & dosagem , Inibidores de Captação de Serotonina/efeitos adversos , Resultado do Tratamento
9.
PLoS One ; 14(11): e0224856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697745

RESUMO

Epilepsy is a significant contributor to worldwide disability. In epilepsy, disability can be broadly divided into two components: ictal (pertaining to the burden of unpredictable seizures and associated medical complications including death) and interictal (pertaining to more pervasive debilitating changes in cognitive and emotional behavior). In this study, we objectively and noninvasively appraise aspects of ictal and interictal behavior in mice using instrumented home-cage chambers designed to assay kinematic and appetitive behavioral measures. Through daily intraperitoneal injections of the chemoconvulsant pentylenetetrazole (PTZ) applied to C57BL/6J mice, we coordinately measure how "behavioral severity" (complex dynamic changes in movement and sheltering behavior) and convulsive severity (latency and occurrence of convulsive seizures) evolve or kindle with repeated injections. By closely studying long epochs between PTZ injections, we identify an interictal syndrome of nocturnal hypoactivity and increased sheltering behavior which remits with the cessation of seizure induction. We observe elements of this interictal behavioral syndrome in seizure-prone DBA/2J mice and in mice with a pathogenic Scn1a mutation (modeling Dravet syndrome). Through analyzing their responses to PTZ, we illustrate how convulsive severity and "behavioral" severity are distinct and independent aspects of the overall severity of a PTZ-induced seizure. Our results illustrate the utility of an ethologically centered automated approach to quantitatively appraise murine expressions of disability in mouse models of seizures and epilepsy. In doing so, this study highlights the very unique psychopharmacological profile of PTZ.


Assuntos
Comportamento Animal , Monitorização Fisiológica , Convulsões/patologia , Animais , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Epilepsias Mioclônicas/patologia , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Pentilenotetrazol/administração & dosagem
10.
Zhonghua Er Ke Za Zhi ; 57(11): 857-862, 2019 Nov 02.
Artigo em Chinês | MEDLINE | ID: mdl-31665840

RESUMO

Objective: To analyze the clinical characteristics of patients with PCDH19-female limited epilepsy (PCDH19-FE). Methods: The clinical data of 60 female epilepsy patients with PCDH19 gene heterozygous variations at the Department of Pediatrics, Peking University First Hospital from October 2007 to December 2018 were collected and analyzed retrospectively, their clinical manifestations, accessory examination and follow-up treatment were summarized. Results: Data of a total of 60 cases of PCDH19-FE were collected. The seizure onset occurred between 4 and 42 months of age (median: 11 months of age). Focal seizures occurred in 47 patients (78%), generalized tonic-clonic seizures (GTCS) occurred in 30 patients (50%), and other rare types of seizures included atypical absence, myoclonic, clonic, tonic, and atonic seizures. Two or more seizures types existed in 24 patients (40%), and seven patients (12%) had attacks of status epilepticus. Sensitivity to fever was observed in 47 out of them (78%) and clustering of seizures as found in all patients. During the interictal phase, focal discharges were monitored in 22 cases (22/45, 49%), multifocal discharges in 12 cases (12/45, 27%), widely discharging in 2 cases (4%), and both focal and widely discharging in 9 cases (20%). Clinical seizures were detected in 30 patients during the electroencephalogram (EEG) recording, including focal seizures in 22 cases, GTCS seizures in 8 cases, tonic seizure in three cases, myoclonic seizure followed by GTCS in one case, and two types of seizures in four cases. Before seizure onset, 57 patients had normal development and three patients had delayed language development. After seizure onset, varied degrees of intelligence disability were present in 38 cases (63%), language delay in 36 cases (60%), and gait instability in 10 cases (17%). Autistic features occurred in 17 cases (28%); and other behavioral problems like learning difficulties, personality, or emotional disorders existed in 33 cases (55%). Age at last follow-up ranged from one year and 3 months to 22 years and 3 months of age, 17 patients (28%) were seizure-free for more than 2 years (5 to 22 years at the last follow-up). The efficiency of antiepileptic drugs were 65% (33/51) in sodium valproate, 63% (27/43) in levetiracetam and 59% (20/34) in topiramate. Conclusions: The clinical features of PCDH19-FE are characterized by clustering of seizures, focal seizures in most cases, sensitivity to fever mostly, focal discharges principally in EEG, varied degrees of intellectual disability or movement disorder, combined with autism spectrum disorders in partial and high efficiency in sodium valproate or levetiracetam treatment.


Assuntos
Caderinas/genética , Epilepsias Mioclônicas/genética , Epilepsia/genética , Convulsões/genética , Adolescente , Transtorno do Espectro Autista , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/fisiopatologia , Feminino , Humanos , Lactente , Mutação , Estudos Retrospectivos , Convulsões/fisiopatologia , Adulto Jovem
11.
Drugs ; 79(16): 1785-1796, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617141

RESUMO

Stiripentol (Diacomit®) is an orally-active, structurally unique anti-epileptic drug (AED) with multiple potential mechanisms of action, including enhancement of central γ-aminobutyric acid transmission. In the EU, stiripentol is indicated for use in conjunction with clobazam and valproate as adjunctive therapy of refractory generalized tonic-clonic seizures in patients with Dravet syndrome (DS; previously known as severe myoclonic epilepsy of infancy), whose seizures are not adequately controlled with clobazam and valproate. This approval (and similar DS indications in the USA, Canada and Japan), reflect the results of the STICLO studies, two small, randomized controlled trials in which stiripentol as adjunctive therapy was associated with a markedly superior response rate after 2 months compared with placebo in patients aged between 3 and ≈ 21 years with DS that was inadequately controlled with clobazam and valproate. These short-term results have subsequently been supported and extended by findings from longer-term, open-label, observational studies, including a retrospective longitudinal cohort study, which showed that the efficacy of combining stiripentol with clobazam and valproate when started at paediatric age was maintained in mid-adulthood with up to 24 years of exposure, and up to 40 years of age. Drowsiness, appetite loss, weight loss, ataxia and tremor are the most common adverse events associated with the addition of stiripentol to clobazam and valproate. Based on the available evidence, stiripentol, as an adjunct to clobazam and valproate, is a demonstrably beneficial and generally well-tolerated second-line treatment for patients with DS.


Assuntos
Anticonvulsivantes/uso terapêutico , Dioxolanos/uso terapêutico , Epilepsias Mioclônicas/tratamento farmacológico , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Dioxolanos/administração & dosagem , Dioxolanos/efeitos adversos , Humanos , Convulsões/tratamento farmacológico
12.
Medicina (B Aires) ; 79 Suppl 3: 42-47, 2019.
Artigo em Espanhol | MEDLINE | ID: mdl-31603843

RESUMO

Epileptic encephalopathies is a group of epileptic syndromes characterized by progressive cognitive impairment beyond the expected for the epilepsy activity. They are characterized by severe pharmaco-resistant epilepsy, severely abnormal electroencephalograms, early-age onset, neurocognitve impairment, variable phenotype and usually normal brain MRI. These syndromes are usually genetically determined. A correct and timely diagnosis could help and guide the medical counselling and the correct therapeutic approach improving the short, medium and long term outcomes. In this article we review the electroencephalographic and genetic findings along with the most recommended therapeutic options facilitating the clinical management. We include the following epileptic encephalopathy syndromes: Ohtahara, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, West, Dravet, non-progressive myoclonic status, Doose, Lennox-Gastaut, Landau-Kleffner and continuous spike-wave during sleep epilepsy.


Assuntos
Encefalopatias/genética , Epilepsias Mioclônicas/genética , Espasmos Infantis , Anticonvulsivantes/classificação , Anticonvulsivantes/uso terapêutico , Encefalopatias/classificação , Encefalopatias/diagnóstico , Encefalopatias/tratamento farmacológico , Eletroencefalografia , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/tratamento farmacológico , Humanos , Síndrome
13.
Nat Commun ; 10(1): 4920, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664034

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos Par 2/genética , Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Íntrons , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
14.
Nat Commun ; 10(1): 4919, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664039

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.


Assuntos
Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idoso , Mapeamento Cromossômico , Feminino , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
15.
Epilepsia ; 60(11): 2224-2234, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31625159

RESUMO

OBJECTIVE: Cannabidiol (CBD) has been approved by the US Food and Drug Administration (FDA) to treat intractable childhood epilepsies, such as Dravet syndrome and Lennox-Gastaut syndrome. However, the intrinsic anticonvulsant activity of CBD has been questioned due to a pharmacokinetic interaction between CBD and a first-line medication, clobazam. This recognized interaction has led to speculation that the anticonvulsant efficacy of CBD may simply reflect CBD augmenting clobazam exposure. The present study aimed to address the nature of the interaction between CBD and clobazam. METHODS: We examined whether CBD inhibits human CYP3A4 and CYP2C19 mediated metabolism of clobazam and N-desmethylclobazam (N-CLB), respectively, and performed studies assessing the effects of CBD on brain and plasma pharmacokinetics of clobazam in mice. We then used the Scn1a+/- mouse model of Dravet syndrome to examine how CBD and clobazam interact. We compared anticonvulsant effects of CBD-clobazam combination therapy to monotherapy against thermally-induced seizures, spontaneous seizures and mortality in Scn1a+/- mice. In addition, we used Xenopus oocytes expressing γ-aminobutyric acid (GABA)A receptors to investigate the activity of GABAA receptors when treated with CBD and clobazam together. RESULTS: CBD potently inhibited CYP3A4 mediated metabolism of clobazam and CYP2C19 mediated metabolism of N-CLB. Combination CBD-clobazam treatment resulted in greater anticonvulsant efficacy in Scn1a+/- mice, but only when an anticonvulsant dose of CBD was used. It is important to note that a sub-anticonvulsant dose of CBD did not promote greater anticonvulsant effects despite increasing plasma clobazam concentrations. In addition, we delineated a novel pharmacodynamic mechanism where CBD and clobazam together enhanced inhibitory GABAA receptor activation. SIGNIFICANCE: Our study highlights the involvement of both pharmacodynamic and pharmacokinetic interactions between CBD and clobazam that may contribute to its efficacy in Dravet syndrome.


Assuntos
Anticonvulsivantes/farmacocinética , Canabidiol/farmacocinética , Clobazam/farmacocinética , Epilepsias Mioclônicas/metabolismo , Animais , Anticonvulsivantes/administração & dosagem , Canabidiol/administração & dosagem , Clobazam/administração & dosagem , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas/fisiologia , Quimioterapia Combinada , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Humanos , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/genética
16.
Eur J Paediatr Neurol ; 23(6): 808-818, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31582194

RESUMO

OBJECTIVE: To quantify gait abnormalities in people with Dravet syndrome (DS). METHODS: Individuals with a confirmed diagnosis of DS were enrolled, and stratified according to knee flexion at initial contact (IC) and range of motion (ROM) during stance (atypical crouch: knee flexion >20° at IC and knee ROM >15° during stance; straight: knee flexion <20° at IC). A 1D ANOVA (α = 0.05) was used to test statistical differences among the joint kinematics and spatio-temporal parameters of the cohort and an age-matched control group. Clinical (neurological and orthopaedic evaluation) and anamnestic data (seizure type, drugs, genetic mutation) were collected; distribution between the two gait phenotypes was assessed with the Fisher exact test and, for mutation, with the chi-squared test (p < 0.05). Linear regression between maximum knee flexion and normalised walking speed was calculated. RESULTS: Seventy-one subjects were enrolled and evaluated with instrumented gait analysis. Fifty-two were included in final analysis (mean age 13.8 ± 7.3; M 26). Two gait patterns were detected: an atypical crouch gait (34.6%) with increased ankle, knee and hip flexion during stance, and reduced walking speed and stride length not associated with muscle-tendon retractions; and a pattern resembling those of healthy age-matched controls, but still showing reduced walking speed and stride length. No differences in clinical or anamnestic data emerged between the two groups. SIGNIFICANCE: Objectively quantified gait in DS shows two gait patterns with no clear-cut relation to clinical data. Kinematics abnormalities may be related to stabilization issues. These findings may guide rehabilitative and preventive measures.


Assuntos
Epilepsias Mioclônicas/complicações , Transtornos Neurológicos da Marcha/etiologia , Adolescente , Fenômenos Biomecânicos , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Articulação do Joelho , Masculino
17.
J Clin Neurophysiol ; 36(5): 389-391, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31490453

RESUMO

Smartphones and other personal electronic devices present novel cortical processing tasks with potential for identification of novel EEG waveforms. A 17-year-old patient with epilepsy manifested as recurrent myoclonic seizures, absence seizures, and a single generalized tonic-clonic seizure was hospitalized to undergo video-EEG monitoring for seizure quantification and classification of the epilepsy syndrome. During the monitoring session, a frontocentral predominant 5 to 6 Hz theta rhythm was identified only when the patient was actively texting or playing a video game on his smartphone. Previously, patients with focal epilepsy have been found to have a frontocentral theta rhythm on EEG while texting on mobile devices. We report similar EEG findings in a patient with genetic generalized epilepsy during smartphone gaming to expand the population and triggers for this theta waveform. Given the young age and type of epilepsy, we suggest that the waveform represents the EEG manifestation of the attention-visuomotor pathway that is stimulus independent.


Assuntos
Epilepsias Mioclônicas/fisiopatologia , Smartphone/tendências , Ritmo Teta/fisiologia , Jogos de Vídeo/tendências , Adolescente , Eletroencefalografia/métodos , Eletroencefalografia/tendências , Epilepsias Mioclônicas/diagnóstico , Humanos , Masculino , Envio de Mensagens de Texto/tendências , Jogos de Vídeo/efeitos adversos
18.
Anesth Prog ; 66(3): 156-158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31545672

RESUMO

Dravet syndrome (DS) is a rare and severe form of epilepsy that begins in infancy. This is particularly burdensome because repeated epileptic seizures lead to cognitive decline. We describe the case of a 12-year-old girl who was diagnosed with DS and was scheduled to have gingival reduction around her mandibular molars. Despite the patient being intellectually disabled, she was able to cooperate somewhat during medical procedures, including intravenous cannulation. Under the assumption that the major problem with anesthesia for DS would be the regulation of body temperature-induced seizures, we used body temperature management equipment to maintain the patient's body temperature during the procedure. We opted for intravenous sedation and administered a total dose of 4.5 mg midazolam throughout the procedure. Anesthesia was completed within 1 hour and 20 minutes without any adverse events. To the best of our knowledge, no previous studies have documented the anesthetic management of DS. In this case, no adverse events occurred perioperatively. However, the patient's temperature rose to that which indicated a slight fever despite the use of a standard cooling technique.


Assuntos
Anestésicos , Epilepsias Mioclônicas , Síndromes Epilépticas , Anestésicos/uso terapêutico , Criança , Feminino , Humanos , Midazolam
19.
Drugs ; 79(13): 1435-1454, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31372958

RESUMO

Cannabidiol (CBD) is a major active component of the Cannabis plant, which, unlike tetrahydrocannabinol (THC), is devoid of euphoria-inducing properties. During the last 10 years, there has been increasing interest in the use of CBD-enriched products for the treatment of epilepsy. In 2018, an oil-based highly purified liquid formulation of CBD (Epidiolex) derived from Cannabis sativa was approved by the US Food and Drug Administration for the treatment of seizures associated with Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS). The mechanisms underlying the antiseizure effects of CBD are unclear but may involve, among others, antagonism of G protein-coupled receptor 55 (GPR55), desensitization of transient receptor potential of vanilloid type 1 (TRPV1) channels, and inhibition of adenosine reuptake. CBD has complex and variable pharmacokinetics, with a prominent first-pass effect and a low oral bioavailability that increases fourfold when CBD is taken with a high-fat/high-calorie meal. In four randomized, double-blind, parallel-group, adjunctive-therapy trials, CBD given at doses of 10 and 20 mg/kg/day administered in two divided administrations was found to be superior to placebo in reducing the frequency of drop seizures in patients with LGS and convulsive seizures in patients with DS. Preliminary results from a recently completed controlled trial indicate that efficacy also extends to the treatment of seizures associated with the tuberous sclerosis complex. The most common adverse events that differentiated CBD from placebo in controlled trials included somnolence/sedation, decreased appetite, increases in transaminases, and diarrhea, behavioral changes, skin rashes, fatigue, and sleep disturbances. About one-half of the patients included in the DS and LGS trials were receiving concomitant therapy with clobazam, and in these patients a CBD-induced increase in serum levels of the active metabolite norclobazam may have contributed to improved seizure outcomes and to precipitation of some adverse effects, particularly somnolence.


Assuntos
Canabidiol/uso terapêutico , Epilepsia/tratamento farmacológico , Animais , Método Duplo-Cego , Epilepsias Mioclônicas/tratamento farmacológico , Humanos , Síndrome de Lennox Gastaut/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Convulsões/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA