Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149.290
Filtrar
1.
Zhonghua Zhong Liu Za Zhi ; 42(8): 629-634, 2020 Aug 23.
Artigo em Chinês | MEDLINE | ID: mdl-32867453

RESUMO

Objective: To investigate the effect of esculin on the proliferation of triple negative breast cancer cells and its molecular mechanism. Methods: MDA-MB-231 cells were treated with 28, 56, 112, 225, 450 and 900 µmol/L of esculin for 24, 48 and 72 h, respectively, and the cell viability was detected by cell counting kit 8 (CCK-8) assay. In addition, MDA-MB-231 cells were treated with 0, 225, 450 and 900 µmol/L of esculin for 48 h. And then the changes in cell morphology were observed by inverted microscope. The clone-forming ability was detected by colony formation assay. The mRNA expression levels of FBI-1, p53 and p21 were detected using real-time fluorescence quantitative polymerase chain reaction. The protein expression levels of FBI-1, p53, p21 and Ki67 were detected by western blot. Results: Compared with the blank control group, the cell viability of MDA-MB-231 cells that treated with esculin significantly decreased in a dose-dependent and time-dependent manners. After treatment with esculin, MDA-MB-231 cells shrunk, flattened, adhered poorly to the culture dish and the cell spacing became larger. Meanwhile, shedding and incomplete cells appeared, of which 900 µmol/L of esculin treatment group showed the most dramatic changes. In addition, the colony formation ratios were decreased to (77.18±5.13)%, (65.94±4.98)% and (45.92±3.70)% in the 225, 450 and 900 µmol/L of esculin treatment groups compared with blank control, respectively (P<0.01). Furthermore, the mRNA and protein expressions of FBI-1 increased, while the levels of p53 and p21 mRNA and protein, as well as the protein expression of Ki67 decreased in a concentration-dependent manner (P<0.01). Conclusion: Esculin may regulate cell cycle-related p53-p21 pathway via FBI-1 mediated DNA replication, thus inhibit the proliferation of triple negative breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Esculina/farmacologia , RNA Mensageiro/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/patologia
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(7): 936-941, 2020 Jul 30.
Artigo em Chinês | MEDLINE | ID: mdl-32895148

RESUMO

OBJECTIVE: To observe the expression of HELQ and RAD51C in normal endometrial and endometrial stromal sarcoma (ESS) and analyze their correlation with the clinical features of the patients. METHODS: The expressions of HELQ and RAD51C proteins were detected by immunohistochemical staining in normal endometrial tissues (14 cases) and tumor tissues from patients with ESS (37 cases) treated in Hunan Provincial Cancer Hospital from January, 2013 to December, 2016. The correlations of the expressions of the two proteins with the patients'age, FIGO staging, tissue type, tumor size, and lymph node metastasis were analyzed. RESULTS: Immunohistochemical staining showed that the expressions of HELQ and RAD51C were both decreased in ESS patients compared with the normal group, and there was a positive correlation between HELQ and RAD51C expression (P < 0.05). HELQ expression in ESS was correlated with the tumor size and type. The expressions of HELQ and RAD51C were not correlated with the patients' age, FIGO stage and status of lymph node metastasis (P > 0.05). CONCLUSIONS: Homologous recombination- directed DNA repair involving HELQ and RAD51C may participate in the occurrence and progression of ESS.


Assuntos
Neoplasias do Endométrio , Sarcoma do Estroma Endometrial , DNA Helicases , Proteínas de Ligação a DNA , Endométrio , Feminino , Humanos , Metástase Linfática
3.
Nat Commun ; 11(1): 3796, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732900

RESUMO

The ter region of the bacterial chromosome, where replication terminates, is the last to be segregated before cell division in Escherichia coli. Delayed segregation is controlled by the MatP protein, which binds to specific sites (matS) within ter, and interacts with other proteins such as ZapB. Here, we investigate the role of MatP by combining short-time mobility analyses of the ter locus with biochemical approaches. We find that ter mobility is similar to that of a non ter locus, except when sister ter loci are paired after replication. This effect depends on MatP, the persistence of catenanes, and ZapB. We characterise MatP/DNA complexes and conclude that MatP binds DNA as a tetramer, but bridging matS sites in a DNA-rich environment remains infrequent. We propose that tetramerisation of MatP links matS sites with ZapB and/or with non-specific DNA to promote optimal pairing of sister ter regions until cell division.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Bacterianos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Divisão Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
Science ; 369(6505): 823-828, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792394

RESUMO

The appearance of DNA in the cytosol is perceived as a danger signal that stimulates potent immune responses through cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). How cells regulate the activity of cGAS toward self-DNA and guard against potentially damaging autoinflammatory responses is a fundamental biological question. Here, we identify barrier-to-autointegration factor 1 (BAF) as a natural opponent of cGAS activity on genomic self-DNA. We show that BAF dynamically outcompetes cGAS for DNA binding, hence prohibiting the formation of DNA-cGAS complexes that are essential for enzymatic activity. Upon acute loss of nuclear membrane integrity, BAF is necessary to restrict cGAS activity on exposed DNA. Our observations reveal a safeguard mechanism, distinct from physical separation, by which cells protect themselves against aberrant immune responses toward genomic DNA.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/imunologia , Imunidade Inata , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Membrana Nuclear/metabolismo
5.
Nat Commun ; 11(1): 3998, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778730

RESUMO

Allergic asthma is a leading chronic disease associated with airway hyperreactivity (AHR). Type-2 innate lymphoid cells (ILC2s) are a potent source of T-helper 2 (Th2) cytokines that promote AHR and lung inflammation. As the programmed cell death protein-1 (PD-1) inhibitory axis regulates a variety of immune responses, here we investigate PD-1 function in pulmonary ILC2s during IL-33-induced airway inflammation. PD-1 limits the viability of ILC2s and downregulates their effector functions. Additionally, PD-1 deficiency shifts ILC2 metabolism toward glycolysis, glutaminolysis and methionine catabolism. PD-1 thus acts as a metabolic checkpoint in ILC2s, affecting cellular activation and proliferation. As the blockade of PD-1 exacerbates AHR, we also develop a human PD-1 agonist and show that it can ameliorate AHR and suppresses lung inflammation in a humanized mouse model. Together, these results highlight the importance of PD-1 agonistic treatment in allergic asthma and underscore its therapeutic potential.


Assuntos
Asma/imunologia , Asma/metabolismo , Imunidade Inata/imunologia , Linfócitos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Animais , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Subunidade gama Comum de Receptores de Interleucina/genética , Interleucina-33/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Células Th2/metabolismo , Transcriptoma
6.
Nat Commun ; 11(1): 4083, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796829

RESUMO

Proper chromatin function and maintenance of genomic stability depends on spatiotemporal coordination between the transcription and replication machinery. Loss of this coordination can lead to DNA damage from increased transcription-replication collision events. We report that deregulated transcription following BRD4 loss in cancer cells leads to the accumulation of RNA:DNA hybrids (R-loops) and collisions with the replication machinery causing replication stress and DNA damage. Whole genome BRD4 and γH2AX ChIP-Seq with R-loop IP qPCR reveals that BRD4 inhibition leads to accumulation of R-loops and DNA damage at a subset of known BDR4, JMJD6, and CHD4 co-regulated genes. Interference with BRD4 function causes transcriptional downregulation of the DNA damage response protein TopBP1, resulting in failure to activate the ATR-Chk1 pathway despite increased replication stress, leading to apoptotic cell death in S-phase and mitotic catastrophe. These findings demonstrate that inhibition of BRD4 induces transcription-replication conflicts, DNA damage, and cell death in oncogenic cells.


Assuntos
Proteínas de Ciclo Celular/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Estruturas R-Loop/efeitos dos fármacos , Fatores de Transcrição/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Cromatina , Proteínas de Ligação a DNA , Instabilidade Genômica , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Neoplasias/terapia , Proteínas Nucleares/metabolismo , Fase S , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
7.
Nat Commun ; 11(1): 4076, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796851

RESUMO

Group 3 innate lymphoid cells (ILC3) are an important regulator for immunity, inflammation and tissue homeostasis in the intestine, but how ILC3 activation is regulated remains elusive. Here we identify a new circular RNA (circRNA) circKcnt2 that is induced in ILC3s during intestinal inflammation. Deletion of circKcnt2 causes gut ILC3 activation and severe colitis in mice. Mechanistically, circKcnt2, as a nuclear circRNA, recruits the nucleosome remodeling deacetylase (NuRD) complex onto Batf promoter to inhibit Batf expression; this in turn suppresses Il17 expression and thereby ILC3 inactivation to promote innate colitis resolution. Furthermore, Mbd3-/-Rag1-/- and circKcnt2-/-Rag1-/- mice develop severe innate colitis following dextran sodium sulfate (DSS) treatments, while simultaneous deletion of Batf promotes colitis resolution. In summary, our data support a function of the circRNA circKcnt2 in regulating ILC3 inactivation and resolution of innate colitis.


Assuntos
Colite/imunologia , Colite/metabolismo , Linfócitos/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , RNA Circular/metabolismo , Animais , Colite/patologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Homeostase , Humanos , Imunidade Inata , Inflamação/imunologia , Inflamação/patologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Canais de Potássio Ativados por Sódio/genética , RNA Circular/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Fatores de Transcrição/genética
8.
Nat Commun ; 11(1): 3962, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770059

RESUMO

Social context can dampen or amplify the perception of touch, and touch in turn conveys nuanced social information. However, the neural mechanism behind social regulation of mechanosensation is largely elusive. Here we report that fruit flies exhibit a strong defensive response to mechanical stimuli to their wings. In contrast, virgin female flies being courted by a male show a compromised defensive response to the stimuli, but following mating the response is enhanced. This state-dependent switch is mediated by a functional reconfiguration of a neural circuit labelled with the Tmc-L gene in the ventral nerve cord. The circuit receives excitatory inputs from peripheral mechanoreceptors and coordinates the defensive response. While male cues suppress it via a doublesex (dsx) neuronal pathway, mating sensitizes it by stimulating a group of uterine neurons and consequently activating a leucokinin-dependent pathway. Such a modulation is crucial for the balance between defense against body contacts and sexual receptivity.


Assuntos
Drosophila melanogaster/fisiologia , Vias Neurais/fisiologia , Comportamento Sexual Animal/fisiologia , Alelos , Animais , Corte , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Neurônios GABAérgicos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Mecanorreceptores/metabolismo , Mutação/genética , Neuropeptídeos/metabolismo , Útero/inervação , Asas de Animais/inervação
9.
Mol Cell ; 79(3): 362-364, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763223

RESUMO

In this issue of Molecular Cell, Wang et al. (2020) investigate stress-induced nuclear condensates of the RNA-binding protein TDP-43, uncovering a protective function for these granules as well as an RNA-dependent mechanism for scaffolding them.


Assuntos
Esclerose Amiotrófica Lateral , RNA Longo não Codificante , Proteínas de Ligação a DNA , Humanos , Proteínas de Ligação a RNA
10.
Mol Cell ; 79(3): 365-367, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763224

RESUMO

In a recent issue of Molecular Cell, Wang et al. (2020) employ unbiased proteomics approaches and live-cell imaging to reveal a key role for the histone chaperone complex FACT (SPT16 and SSRP1) in governing Cas9 turnover at the DNA target site during genome and epigenome editing.


Assuntos
Edição de Genes , RNA Longo não Codificante , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA , Histonas
11.
Zhonghua Shao Shang Za Zhi ; 36(8): 651-657, 2020 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-32829603

RESUMO

Objective: To investigate the effects and mechanism of mitochondrial transcription factor A (TFAM) and cytochrome c oxidase (COX) pathway in the energy production of hypoxic cardiomyocytes of rats regulated by tumor necrosis factor receptor associated protein 1 (TRAP1). Methods: The cardiomyocytes were isolated from 135 neonatal Sprague-Dawley rats (aged 1-3 d) and cultured for the following experiments. (1) Cells were collected and divided into normoxia blank control (NBC) group, hypoxia blank control (HBC) group, hypoxia+ TRAP1 over-expression control (HTOC) group, and hypoxia+ TRAP1 over-expression (HTO) group according to the random number table (the same grouping method below), with 1 bottle in each group. Cells in NBC group were cultured routinely, cells in HBC group were cultured in hypoxic condition for 6 hours after routine culture, cells in HTOC and HTO groups were respectively added with TRAP1 over-expression empty virus vector and TRAP1 over-expression adenovirus vector virus suspension for transfection for 48 hours after routine culture and then cultured in hypoxic condition for 6 hours. The protein expression of TFAM of cells in each group was detected by Western blotting. (2) Cells were collected and divided into NBC, HBC, HTOC, HTO, HTO+ TFAM interference control (HTOTIC), and HTO+ TFAM interference (HTOTI) groups, with 1 well in each group. Cells in the former 4 groups were dealt with the same methods as the corresponding groups in experiment (1). Cells in HTOTIC and HTOTI groups were respectively added with TFAM interference empty virus vector and TFAM interference adenovirus vector virus suspension for transfection for 48 hours, and the other processing methods were the same as those in HTO group. The content of ATP of cells in each group was determined by ATP determination kit and microplate reader, and the COX activity of cells in each group was determined by COX activity assay kit and microplate reader. (3) Cells were collected and divided into NBC group, normoxia+ sodium azide (NSA) group, HBC group, and hypoxia+ sodium azide (HSA) group, with 1 well in each group. Cells in NBC and HBC groups were respectively dealt with the same methods as the corresponding groups in experiment (1). Cells in NSA and HSA groups were respectively added with 32 nmol sodium azide at 30 min before experiment or hypoxia, and then cells in HSA group were cultured in hypoxic condition for 6 hours. The content of ATP was determined by the same method as above. The above three experiments were repeated for three times. Data were statistically analyzed with one-way analysis of variance and least significant difference test. Results: (1) Compared with that in NBC group, the protein expression of TFAM of cells in HBC group was significantly decreased (P<0.01). Compared with that in HBC group or HTOC group, the protein expression of TFAM of cells in HTO group was significantly increased (P<0.01). (2) Compared with 0.552±0.041 and 1.99±0.15 in NBC group, the COX activity (0.270±0.044) and ATP content (1.09±0.11) of cells in HBC group were significantly decreased (P<0.01). Compared with 0.269±0.042 and 1.17±0.12 in HBC group and those in HTOC group, the COX activity (0.412±0.032 and 0.404±0.016) and ATP content (1.75±0.06 and 1.69±0.07) of cells in HTO and HTOTIC groups were significantly increased (P<0.01). Compared with those in HTO and HTOTIC groups, the COX activity (0.261±0.036) and ATP content (1.23±0.07) of cells in HTOTI group were significantly decreased (P<0.01). (3) Compared with that in NBC group, the ATP content of cells in NSA and NBC groups was significantly decreased (P<0.01). Compared with that in HBC group, the ATP content of cells in HSA group was significantly decreased (P<0.01). Conclusions: TRAP1 can increase the COX activity of cardiomyocytes by raising the expression of TFAM, and finally alleviate the impairment in energy production of cardiomyocytes caused by hypoxia.


Assuntos
Miócitos Cardíacos , Animais , Proteínas de Ligação a DNA , Complexo IV da Cadeia de Transporte de Elétrons , Proteínas de Choque Térmico HSP90 , Hipóxia , Proteínas Mitocondriais , Ratos , Ratos Sprague-Dawley , Receptores do Fator de Necrose Tumoral , Fatores de Transcrição
12.
Nat Commun ; 11(1): 3839, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737294

RESUMO

Chromatin regulates spatiotemporal gene expression during neurodevelopment, but it also mediates DNA damage repair essential to proliferating neural progenitor cells (NPCs). Here, we uncover molecularly dissociable roles for nucleosome remodeler Ino80 in chromatin-mediated transcriptional regulation and genome maintenance in corticogenesis. We find that conditional Ino80 deletion from cortical NPCs impairs DNA double-strand break (DSB) repair, triggering p53-dependent apoptosis and microcephaly. Using an in vivo DSB repair pathway assay, we find that Ino80 is selectively required for homologous recombination (HR) DNA repair, which is mechanistically distinct from Ino80 function in YY1-associated transcription. Unexpectedly, sensitivity to loss of Ino80-mediated HR is dependent on NPC division mode: Ino80 deletion leads to unrepaired DNA breaks and apoptosis in symmetric NPC-NPC divisions, but not in asymmetric neurogenic divisions. This division mode dependence is phenocopied following conditional deletion of HR gene Brca2. Thus, distinct modes of NPC division have divergent requirements for Ino80-dependent HR DNA repair.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Proteína BRCA2/genética , Cromatina/química , Proteínas de Ligação a DNA/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Reparo de DNA por Recombinação , ATPases Associadas a Diversas Atividades Celulares/deficiência , Animais , Apoptose/genética , Proteína BRCA2/deficiência , Divisão Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/deficiência , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Células-Tronco Neurais/citologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
13.
Nat Commun ; 11(1): 4168, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820162

RESUMO

There is conflicting data regarding the role of PBAF complex mutations and response to immune checkpoint blockade (ICB) therapy in clear cell renal cell carcinoma (ccRCC) and other solid tumors. We assess the prevalence of PBAF complex mutations from two large cohorts including the pan-cancer TCGA project (n = 10,359) and the MSK-IMPACT pan-cancer immunotherapy cohort (n = 3700). Across both cohorts, PBAF complex mutations, predominantly PBRM1 mutations, are most common in ccRCC. In multivariate models of ccRCC patients treated with ICB (n = 189), loss-of-function (LOF) mutations in PBRM1 are not associated with overall survival (OS) (HR = 1.24, p = 0.47) or time to treatment failure (HR = 0.85, p = 0.44). In a series of 11 solid tumors (n = 2936), LOF mutations are not associated with improved OS in a stratified multivariate model (HR = 0.9, p = 0.7). In a current series of solid tumors treated with ICB, we are unable to demonstrate favorable response to ICB in patients with PBAF complex mutations.


Assuntos
Carcinoma de Células Renais/terapia , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Imunoterapia/métodos , Neoplasias Renais/terapia , Mutação , Fatores de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/genética , Neoplasias Renais/patologia , Pessoa de Meia-Idade
14.
Nat Commun ; 11(1): 4184, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826889

RESUMO

Oncogenic processes exert their greatest effect by targeting regulators of cell proliferation. Studying the mechanism underlying growth augmentation is expected to improve clinical therapies. The ovarian tumor (OTU) subfamily deubiquitinases have been implicated in the regulation of critical cell-signaling cascades, but most OTUs functions remain to be investigated. Through an unbiased RNAi screen, knockdown of OTUD5 is shown to significantly accelerate cell growth. Further investigation reveals that OTUD5 depletion leads to the enhanced transcriptional activity of TRIM25 and the inhibited expression of PML by altering the ubiquitination level of TRIM25. Importantly, OTUD5 knockdown accelerates tumor growth in a nude mouse model. OTUD5 expression is markedly downregulated in tumor tissues. The reduced OTUD5 level is associated with an aggressive phenotype and a poor clinical outcome for cancers patients. Our findings reveal a mechanism whereby OTUD5 regulates gene transcription and suppresses tumorigenesis by deubiquitinating TRIM25, providing a potential target for oncotherapy.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença/genética , Células HEK293 , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Interferência de RNA , Transdução de Sinais , Transcriptoma , Ubiquitinação
15.
Nat Commun ; 11(1): 4206, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826896

RESUMO

Saccharomyces cerevisiae TBP associated factor 14 (Taf14) is a well-studied transcriptional regulator that controls diverse physiological processes and that physically interacts with at least seven nuclear complexes in yeast. Despite multiple previous Taf14 structural studies, the nature of its disparate transcriptional regulatory functions remains opaque. Here, we demonstrate that the extra-terminal (ET) domain of Taf14 (Taf14ET) recognizes a common motif in multiple transcriptional coactivator proteins from several nuclear complexes, including RSC, SWI/SNF, INO80, NuA3, TFIID, and TFIIF. Moreover, we show that such partner binding promotes liquid-liquid phase separation (LLPS) of Taf14ET, in a mechanism common to YEATS-associated ET domains (e.g., AF9ET) but not Bromo-associated ET domains from BET-family proteins. Thus, beyond identifying the molecular mechanism by which Taf14ET associates with many transcriptional regulators, our study suggests that Taf14 may function as a versatile nuclear hub that orchestrates transcriptional machineries to spatiotemporally regulate diverse cellular pathways.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Proteínas de Transporte , Proteínas de Ciclo Celular/metabolismo , Análise por Conglomerados , Proteínas de Ligação a DNA , Epigenômica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética , Fatores de Transcrição/metabolismo
16.
Nat Commun ; 11(1): 4196, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826907

RESUMO

Cells utilise specialized polymerases from the Primase-Polymerase (Prim-Pol) superfamily to maintain genome stability. Prim-Pol's function in genome maintenance pathways including replication, repair and damage tolerance. Mycobacteria contain multiple Prim-Pols required for lesion repair, including Prim-PolC that performs short gap repair synthesis during excision repair. To understand the molecular basis of Prim-PolC's gap recognition and synthesis activities, we elucidated crystal structures of pre- and post-catalytic complexes bound to gapped DNA substrates. These intermediates explain its binding preference for short gaps and reveal a distinctive modus operandi called Synthesis-dependent Template Displacement (STD). This mechanism enables Prim-PolC to couple primer extension with template base dislocation, ensuring that the unpaired templating bases in the gap are ushered into the active site in an ordered manner. Insights provided by these structures establishes the molecular basis of Prim-PolC's gap recognition and extension activities, while also illuminating the mechanisms of primer extension utilised by closely related Prim-Pols.


Assuntos
Proteínas de Bactérias/química , DNA Primase/química , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA/química , Mycobacterium/genética , Mycobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , DNA Primase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
17.
Nat Commun ; 11(1): 4225, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839463

RESUMO

Gallbladder cancer (GBC) is an aggressive gastrointestinal malignancy with no approved targeted therapy. Here, we analyze exomes (n = 160), transcriptomes (n = 115), and low pass whole genomes (n = 146) from 167 gallbladder cancers (GBCs) from patients in Korea, India and Chile. In addition, we also sequence samples from 39 GBC high-risk patients and detect evidence of early cancer-related genomic lesions. Among the several significantly mutated genes not previously linked to GBC are ETS domain genes ELF3 and EHF, CTNNB1, APC, NSD1, KAT8, STK11 and NFE2L2. A majority of ELF3 alterations are frame-shift mutations that result in several cancer-specific neoantigens that activate T-cells indicating that they are cancer vaccine candidates. In addition, we identify recurrent alterations in KEAP1/NFE2L2 and WNT pathway in GBC. Taken together, these define multiple targetable therapeutic interventions opportunities for GBC treatment and management.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação da Fase de Leitura , Neoplasias da Vesícula Biliar/genética , Predisposição Genética para Doença/genética , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Chile , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Humanos , Índia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-ets/imunologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , República da Coreia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
18.
Nat Commun ; 11(1): 3520, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665551

RESUMO

PRDM (PRDI-BF1 and RIZ homology domain containing) family members are sequence-specific transcriptional regulators involved in cell identity and fate determination, often dysregulated in cancer. The PRDM15 gene is of particular interest, given its low expression in adult tissues and its overexpression in B-cell lymphomas. Despite its well characterized role in stem cell biology and during early development, the role of PRDM15 in cancer remains obscure. Herein, we demonstrate that while PRDM15 is largely dispensable for mouse adult somatic cell homeostasis in vivo, it plays a critical role in B-cell lymphomagenesis. Mechanistically, PRDM15 regulates a transcriptional program that sustains the activity of the PI3K/AKT/mTOR pathway and glycolysis in B-cell lymphomas. Abrogation of PRDM15 induces a metabolic crisis and selective death of lymphoma cells. Collectively, our data demonstrate that PRDM15 fuels the metabolic requirement of B-cell lymphomas and validate it as an attractive and previously unrecognized target in oncology.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Imunoprecipitação da Cromatina , Biologia Computacional , Proteínas de Ligação a DNA/genética , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Linfoma/genética , Linfoma/metabolismo , Camundongos , Camundongos SCID , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Distribuição Aleatória , Fatores de Transcrição/genética , Transcriptoma/genética
19.
Gene ; 758: 144966, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32687945

RESUMO

RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid cohesion. This function is essential for proper chromosome segregation, post-replicative DNA repair, and prevention of inappropriate recombination between repetitive regions. In interphase, cohesin also functions in the control of gene expression by binding to numerous sites within the genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in RAD21 have been associated with human genetic disorders, including developmental diseases such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic mutations and amplification of the RAD21 have also been widely reported in both human solid and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular processes that this important protein regulates and discuss the significance of RAD21 deregulation in cancer and cohesinopathies.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Neoplasias/genética , Apoptose/genética , Esôfago de Barrett/genética , Quebras de DNA de Cadeia Dupla , Síndrome de Cornélia de Lange/genética , Hematopoese/genética , Humanos , Pseudo-Obstrução Intestinal/genética , Meiose/genética , Neoplasias/patologia
20.
PLoS Genet ; 16(7): e1008933, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32692737

RESUMO

Structure-specific endonucleases (SSEs) play key roles in DNA replication, recombination, and repair. SSEs must be tightly regulated to ensure genome stability but their regulatory mechanisms remain incompletely understood. Here, we show that in the fission yeast Schizosaccharomyces pombe, the activities of two SSEs, Dna2 and Rad16 (ortholog of human XPF), are temporally controlled during the cell cycle by the CRL4Cdt2 ubiquitin ligase. CRL4Cdt2 targets Pxd1, an inhibitor of Dna2 and an activator of Rad16, for degradation in S phase. The ubiquitination and degradation of Pxd1 is dependent on CRL4Cdt2, PCNA, and a PCNA-binding degron motif on Pxd1. CRL4Cdt2-mediated Pxd1 degradation prevents Pxd1 from interfering with the normal S-phase functions of Dna2. Moreover, Pxd1 degradation leads to a reduction of Rad16 nuclease activity in S phase, and restrains Rad16-mediated single-strand annealing, a hazardous pathway of repairing double-strand breaks. These results demonstrate a new role of the CRL4Cdt2 ubiquitin ligase in genome stability maintenance and shed new light on how SSE activities are regulated during the cell cycle.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases Flap/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Reparo do DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Fase S/genética , Schizosaccharomyces/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA