Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.923
Filtrar
1.
Anal Chem ; 92(14): 9699-9705, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32441935

RESUMO

A novel coronavirus (SARS-CoV-2) was recently identified in patients with acute respiratory disease and spread quickly worldwide. A specific and rapid diagnostic method is important for early identification. The reverse-transcription recombinase-aided amplification (RT-RAA) assay is a rapid detection method for several pathogens. Assays were performed within 5-15 min as a one-step single tube reaction at 39 °C. In this study, we established two RT-RAA assays for the S and orf1ab gene of SARS-CoV-2 using clinical specimens for validation. The analytical sensitivity of the RT-RAA assay was 10 copies for the S and one copy for the orf1ab gene per reaction. Cross-reactions were not observed with any of the other respiratory pathogens. A 100% agreement between the RT-RAA and real-time PCR assays was accomplished after testing 120 respiratory specimens. These results demonstrate that the proposed RT-RAA assay will be beneficial as it is a faster, more sensitive, and more specific tool for the detection of SARS-CoV-2.


Assuntos
Betacoronavirus/química , Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase/métodos , Bactérias/química , Bactérias/genética , Reações Cruzadas , Sondas de DNA , Genes Virais , Humanos , Pandemias , Plasmídeos , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Sensibilidade e Especificidade , Proteínas Virais/genética , Vírus/química , Vírus/genética
2.
Emerg Infect Dis ; 26(8): 1944-1946, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32433015
3.
Emerg Microbes Infect ; 9(1): 1175-1179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32448084

RESUMO

Different primers/probes sets have been developed all over the world for the nucleic acid detection of SARS-CoV-2 by quantitative real time polymerase chain reaction (qRT-PCR) as a standard method. In our recent study, we explored the feasibility of droplet digital PCR (ddPCR) for clinical SARS-CoV-2 nucleic acid detection compared with qRT-PCR using the same primer/probe sets issued by Chinese Center for Disease Control and Prevention (CDC) targeting viral ORF1ab or N gene, which showed that ddPCR could largely minimize the false negatives reports resulted by qRT-PCR [Suo T, Liu X, Feng J, et al. ddPCR: a more sensitive and accurate tool for SARS-CoV-2 detection in low viral load specimens. medRxiv [Internet]. 2020;2020.02.29.20029439. Available from: https://medrxiv.org/content/early/2020/03/06/2020.02.29.20029439.abstract]. Here, we further stringently compared the performance of qRT-PCR and ddPCR for 8 primer/probe sets with the same clinical samples and conditions. Results showed that none of 8 primer/probe sets used in qRT-PCR could significantly distinguish true negatives and positives with low viral load (10-4 dilution). Moreover, false positive reports of qRT-PCR with UCDC-N1, N2 and CCDC-N primers/probes sets were observed. In contrast, ddPCR showed significantly better performance in general for low viral load samples compared to qRT-PCR. Remarkably, the background readouts of ddPCR are relatively lower, which could efficiently reduce the production of false positive reports.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Reação em Cadeia da Polimerase Multiplex , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase em Tempo Real , Primers do DNA , Sondas de DNA , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Pandemias , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Sensibilidade e Especificidade , Carga Viral
4.
Food Chem ; 322: 126758, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32283372

RESUMO

A paper-based DNA biosensor was developed for food authenticity testing using dairy products as a model. DNA from milk-based samples was isolated, and species-specific DNA sequences were amplified and identified by the biosensor using specific DNA probes. The properties of gold nanoparticles were exploited for visual detection. The biosensor was applied for detection of three species, namely cow, sheep and goat, while as low as 1.6 fmol for cow and goat, and 3.1 fmol for sheep PCR product were detected. Moreover, adulteration down to 0.01% could be detected, based on binary mixtures of cows', ewes' and goats' milk yogurt, containing 0.01 to 5% of cows' yogurt in ewes' and goats' yogurts, respectively. The proposed paper-based DNA biosensor offered 10 times higher detectability than other methods, good specificity and reproducibility, and could be applied easily for the detection of other adulterated food products, such as meat, olive oil and legumes.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Contaminação de Alimentos/análise , Leite/química , Papel , Animais , Bovinos , DNA/metabolismo , Sondas de DNA/metabolismo , Feminino , Cabras/genética , Ouro/química , Nanopartículas Metálicas/química , Leite/metabolismo , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Ovinos/genética , Iogurte/análise
5.
Proc Natl Acad Sci U S A ; 117(16): 8719-8726, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32241887

RESUMO

Rapid methods for diagnosis of bacterial infections are urgently needed to reduce inappropriate use of antibiotics, which contributes to antimicrobial resistance. In many rapid diagnostic methods, DNA oligonucleotide probes, attached to a surface, bind to specific nucleotide sequences in the DNA of a target pathogen. Typically, each probe binds to a single target sequence; i.e., target-probe binding is monovalent. Here we show using computer simulations that the detection sensitivity and specificity can be improved by designing probes that bind multivalently to the entire length of the pathogen genomic DNA, such that a given probe binds to multiple sites along the target DNA. Our results suggest that multivalent targeting of long pieces of genomic DNA can allow highly sensitive and selective binding of the target DNA, even if competing DNA in the sample also contains binding sites for the same probe sequences. Our results are robust to mild fragmentation of the bacterial genome. Our conclusions may also be relevant for DNA detection in other fields, such as disease diagnostics more broadly, environmental management, and food safety.


Assuntos
Desenho Assistido por Computador , Sondas de DNA , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Sondas de Oligonucleotídeos , Biologia Computacional/métodos , Simulação por Computador , DNA Bacteriano/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos
6.
Nat Commun ; 11(1): 1543, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210235

RESUMO

Field-effect transistor (FET)-based biosensors allow label-free detection of biomolecules by measuring their intrinsic charges. The detection limit of these sensors is determined by the Debye screening of the charges from counter ions in solutions. Here, we use FETs with a deformed monolayer graphene channel for the detection of nucleic acids. These devices with even millimeter scale channels show an ultra-high sensitivity detection in buffer and human serum sample down to 600 zM and 20 aM, respectively, which are ∼18 and ∼600 nucleic acid molecules. Computational simulations reveal that the nanoscale deformations can form 'electrical hot spots' in the sensing channel which reduce the charge screening at the concave regions. Moreover, the deformed graphene could exhibit a band-gap, allowing an exponential change in the source-drain current from small numbers of charges. Collectively, these phenomena allow for ultrasensitive electronic biomolecular detection in millimeter scale structures.


Assuntos
Técnicas Biossensoriais/instrumentação , Sondas de DNA/análise , DNA de Cadeia Simples/análise , Grafite/química , MicroRNAs/análise , Sondas de DNA/química , DNA de Cadeia Simples/química , Estudos de Viabilidade , Humanos , Íons , Limite de Detecção , MicroRNAs/química , Simulação de Dinâmica Molecular , Sensibilidade e Especificidade , Transistores Eletrônicos
7.
Chem Commun (Camb) ; 56(17): 2658-2661, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32022034

RESUMO

A DNAzyme-powered micromachine with anti-interfering properties and displaying resistance to being inhibited by biological matrices was built. This micromachine was able to respond to a specific target in high-concentration serum or whole blood.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA Catalítico/metabolismo , Sondas de DNA/química , DNA Catalítico/antagonistas & inibidores
8.
Chem Commun (Camb) ; 56(19): 2901-2904, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32037435

RESUMO

The enzymatic-assisted signal amplification of DNA sensors is rarely applied in living cells due to the difficulties in protein delivery. In this study, we have proposed a biomineralization-based DNA nanoprobe to transport nucleases and DNA sensors for enzyme-assisted imaging of microRNA in living cells.


Assuntos
Biomineralização , Sondas de DNA/química , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Nanopartículas/química , Humanos , Estruturas Metalorgânicas/química , MicroRNAs/metabolismo
9.
Talanta ; 209: 120505, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891997

RESUMO

Rapid and accurate detection of microRNA content in cells is of great significance. Here, an ultrasensitive microchip electrophoresis (MCE) method based on cascade chemiluminescence (CL) signal amplification was developed for the detection of microRNA-21 in cells. In this method, horseradish peroxidase labeled DNA was used as a signal probe, which could induce CL signal by the reaction of luminol and H2O2. Combining with two cyclic enzyme digestion reactions by T7 exonuclease, a large number of signal probes were degraded. By using MCE-CL as a separation and detection platform, an amplified CL signal peak was achieved. The developed MCE-CL method can detect miR-21 at a concentration as low as 1.0 × 10-15 M, which was enhanced by six orders of magnitude compared with those of conventional MCE-CL assay. This method has been applied for the detection of microRNA-21 in cell lysate, which show that there were significant differences of miR-21 among different types of cells, and the content in cancer cells was much higher than that in normal cells, which can be used for the identification of cancer cells. Therefore, the proposed method held great application potential in early diagnosis of tumor and biomedical research.


Assuntos
Eletroforese em Microchip/métodos , MicroRNAs/análise , Armoracia/enzimologia , Linhagem Celular Tumoral , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Exodesoxirribonucleases/química , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Luminescência , Medições Luminescentes , Luminol/química , MicroRNAs/genética , Neoplasias/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico
10.
Talanta ; 209: 120511, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892041

RESUMO

An electrochemical immuno-nanogenosensor is developed based on noble-metal-free nickel phosphate nanostructure (NiPNs) as an excellent biocompatible material for miRNA detection in blood serum and urine samples without using indicators for the first time. The pompon flower-like morphology of NiPNs is synthesized, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction pattern (XRD), fourier transform-infrared spectroscopy (FT-IR), and electrochemical impedance methods. The novel NiPNs nanostructured interface was constructed by coordinate covalent bonding between Ni and phosphate group of probe DNA. The constructed NiPNs-p-DNA surface served as the amplified hybridization platform enabling efficient access to numerous target microRNA sequences. As a result, the developed NiPFNs biosensing platform displayed excellent sensitivity, selectivity, and ultralow experimental limit-of-detection (LOD) of 0.034 pM (S/N = 3) as compared with other Ni phosphide nanostructures. This simple and efficient approach is highly suitable for the development of point-of-care detection systems. To the extent of our knowledge, this is the first report on trace level detection of miRNAs employing non-noble Ni metal nanostructures based biosensing platform.


Assuntos
MicroRNAs/sangue , MicroRNAs/urina , Nanoestruturas/química , Níquel/química , Fosfatos/química , Técnicas Biossensoriais/métodos , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Espectroscopia Dielétrica , Limite de Detecção , MicroRNAs/genética , Hibridização de Ácido Nucleico
11.
Anal Bioanal Chem ; 412(4): 915-922, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31900531

RESUMO

A tetrahedral DNA probe can effectively overcome the steric effects of a single-stranded probe to obtain well-controlled density and minimize nonspecific adsorption. Herein, a highly sensitive electrochemical biosensor is fabricated for determination of protein using a tetrahedral DNA probe and rolling circle amplification (RCA). N- and P-co-doped graphene (NP-rGO) is prepared, and AuNPs are then electrodeposited on it for DNA probe immobilization. Benefitting from the synergistic effects of the excellent electrical conductivity of NP-rGO, the stability of the tetrahedral DNA probe and the signal amplification of RCA, the biosensor achieves a low limit of 3.53 × 10-14 M for thrombin and a wide linear range from 1 × 10-13 to 1 × 10-7 M. This study provides a sensitive and effective method for the detection of protein in peripheral biofluids, and paves the way for future clinical diagnostics and treatment of disease. Graphical abstract.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Grafite/química , Trombina/análise , Sondas de DNA/química , Técnicas Eletroquímicas/métodos , Ouro/química , Humanos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico/métodos
13.
Chem Commun (Camb) ; 56(11): 1681-1684, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31939961

RESUMO

A functionalized dumbbell probe (FDP) based amplification method, termed as a cascading exponential amplification DNA machine (CEA-DNA machine), has been developed to autonomously accumulate single G-quadruplexes (SGQs) and twin-G-quadruplexes (TGQs) for robust fluorescence signal-on probing of miRNA-21.


Assuntos
DNA/química , MicroRNAs/sangue , Técnicas de Amplificação de Ácido Nucleico/métodos , Espectrometria de Fluorescência/métodos , Benzotiazóis/química , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Corantes Fluorescentes/química , Quadruplex G , Humanos , Sequências Repetidas Invertidas , Limite de Detecção , MicroRNAs/genética , Hibridização de Ácido Nucleico
14.
Chem Commun (Camb) ; 56(8): 1175-1178, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31919487

RESUMO

We developed a bright carbon nanodot-based miRNA detection method with signal amplification by concatenated hybridization chain reaction (CHCR). In the presence of target miRNA, CHCR was triggered and a frond-like DNA product was formed, which recovered remarkable fluorescence. The location and level of the target miRNA were then indicated.


Assuntos
Carbono/química , MicroRNAs/análise , Pontos Quânticos/química , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Humanos , Limite de Detecção , Células MCF-7 , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico , Espectrometria de Fluorescência/métodos
15.
Chem Commun (Camb) ; 56(10): 1501-1504, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31915759

RESUMO

A new DNA nanoprobe based on a Y-shape and pyrene-modified DNA self-assembly is developed to sensitively and specifically detect microRNA through a pyrene excimer-monomer switch. Exhibiting the capability of self-delivery and resistance to nuclease degradation, the nanoprobe has been successfully applied for microRNA imaging in live cells.


Assuntos
Sondas de DNA/química , MicroRNAs/metabolismo , Nanoestruturas/química , Linhagem Celular Tumoral , Sondas de DNA/metabolismo , Corantes Fluorescentes/química , Humanos , MicroRNAs/química , Microscopia Confocal , Pirenos/química
16.
Photochem Photobiol Sci ; 19(1): 105-113, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31930262

RESUMO

We report on the light-switch behaviour of two head-to-tail expanded bipyridinium species as a function of their interaction with calf thymus DNA and polynucleotides. In particular, both DNA and polynucleotides containing exclusively adenine or guanine moieties quench the luminescence of the fused expanded bipyridinium species. This behaviour has been rationalized demonstrating that a reductive photoinduced electron transfer process takes place involving both adenine or guanine moieties. The charge separated state so produced recombines in the tens of picoseconds. These results could help in designing new organic substrates for application in DNA probing technology and lab on chip-based sensing systems.


Assuntos
Sondas de DNA/química , DNA/análise , Corantes Fluorescentes/química , Imagem Óptica , Compostos de Piridínio/química , Animais , Bovinos , Sondas de DNA/síntese química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Oxirredução , Compostos de Piridínio/síntese química , Espectroscopia de Luz Próxima ao Infravermelho , Raios Ultravioleta
17.
Talanta ; 209: 120550, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891998

RESUMO

Developing the high selectivity and sensitivity strategy for nucleic acid detection is crucial for early diagnosis and therapy of diseases. In this work, a novel low back-ground fluorescent sensor platform for the detection of nucleic acid has been developed based on δ-FeOOH nanosheets integrating with exonuclease III-assisted target-recycling signal amplification. Because of the strong binding ability between the single-strand DNA (ssDNA) and the δ-FeOOH nanosheets, the dye-labeled ssDNA probe would be quenched by δ-FeOOH nanosheets through fluorescence resonance energy transfer (FRET). By using magnetic separate properties of δ-FeOOH, the background signal was separated from the sensor system, and the low background sensor system was obtained. After adding the target DNA, a double-strand DNA complex (dsDNA) would be formed between the target DNA and dye-labeled ssDNA probe. Then, the dye-labeled ssDNA probe in the dsDNA complex would be stepwise hydrolyzed into short fragments from 3'-terminus by Exonuclease III, and the fluorescence signal was recovered due to the weak bind affinity between the short fragments and δ-FeOOH nanosheets. By using the fluorescence quenching ability of δ-FeOOH nanosheets and enzyme-assisted target-recycling signal amplification, this strategy could show an excellent selectivity toward hepatitis C virus DNA with a low detection limit of 10 pM. By simply changing the dye-labeled ssDNA probe sequence, this sensing platform can be developed as a universal approach for the simple, sensitive, and selective detection of different target DNA.


Assuntos
DNA Viral/sangue , Exodesoxirribonucleases/química , Compostos Férricos/química , Hepacivirus/isolamento & purificação , Hepatite C/sangue , Técnicas Biossensoriais/métodos , Sondas de DNA/química , DNA de Cadeia Simples/química , DNA Viral/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Hepatite C/virologia , Humanos , Limite de Detecção , Nanoestruturas/química
18.
Chemistry ; 26(6): 1286-1291, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31725178

RESUMO

Three sets of 7-deazaadenine and cytosine nucleosides and nucleoside triphosphates bearing either unsubstituted ferrocene, octamethylferrocene and ferrocenecarboxamide linked through an alkyne tether to position 7 or 5, respectively, were designed and synthesized. The modified dNFcX TPs were good substrates for KOD XL DNA polymerase in primer extension and were used for enzymatic synthesis of redox-labelled DNA probes. Square-wave voltammetry showed that the octamethylferrocene oxidation potential was shifted to lower values, whilst the ferrocenecarboxamide was shifted to higher potentials, as compared to ferrocene. Tailed PEX products containing different ratios of Fc-labelled A (dAFc ) and FcPa-labelled C (dCFcPa ) were synthesized and hybridized with capture oligonucleotides immobilized on gold electrodes to study the electrochemistry of the redox-labelled DNA. Clearly distinguishable, fully orthogonal and ratiometric peaks were observed for the dAFc and dCFcPa bases in DNA, demonstrating their potential for use in redox coding of nucleobases and for the direct electrochemical measurement of the relative ratio of nucleobases in an unknown sequence of DNA.


Assuntos
DNA/química , Compostos Ferrosos/química , Metalocenos/química , Nucleotídeos/química , Coloração e Rotulagem/métodos , Citidina Trifosfato/química , DNA/metabolismo , Sondas de DNA/síntese química , Sondas de DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Técnicas Eletroquímicas , Oxirredução , Especificidade por Substrato
19.
J Chromatogr A ; 1613: 460693, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-31732154

RESUMO

An ultrasensitive microchip electrophoresis chemiluminescence (MCE-CL) assay platform based on separation assisted cascade signal amplification was developed for detection of trace biomolecules. In this work, the aptamer was used as a target probe to bind target molecule and triggering cascade signal amplification reaction. The horseradish peroxide labeled DNA (HRP-DNA) was used as signal probe, utilizing nucleic acid hybridization and exonuclease cutting technology realized ultrasensitive detection of biomolecules on the MCE-CL assay platform. Taking gamma interferon (IFN-γ) as a model analyte, the linear range for IFN-γ detection is 8.0 × 10-15-1.0 × 10-8 M, the detection limit is 1.6 fM, which is six orders magnitude lower than that of without signal amplification. The proposed method was successfully applied for the quantification of IFN-γ in human plasma samples. It was demonstrated that the MCE-CL assay platform was quick, sensitive, and highly selective. It may serve as a tool for clinical analysis of IFN-γ to assist in the diagnosis of disease.


Assuntos
Técnicas Biossensoriais/métodos , Análise Química do Sangue/métodos , Eletroforese em Microchip , Medições Luminescentes , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/instrumentação , Análise Química do Sangue/instrumentação , DNA/química , Sondas de DNA/química , Humanos , Interferon gama/sangue , Limite de Detecção , Medições Luminescentes/instrumentação , Peróxidos/análise
20.
Appl Biochem Biotechnol ; 190(2): 373-390, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31363981

RESUMO

In this article, we have reported the preparation and structural characterization of a new Schiff base ligand (E)-2-(((2,6-difluorophenyl)imino)methyl)phenol (HSBL) and its derived metal(II) complexes [Cu(SBL)2] (1), [Ni(SBL)2] (2) and [Pd(SBL)2] (3). Using various analytical and spectroscopic techniques, their structural properties have been appraised. The proposed chemical structure of HSBL has been confirmed by Single crystal XRD studies. Bidentate characteristic of HSBL and its coordination with metal(II) ions through the oxygen atom of the phenolic group and nitrogen atom of the azomethine group have been evaluated from the FT-IR spectral analysis. Pd(II) complex of HSBL (complex 3) has found to be efficient in bringing about the interaction with DNA as well as BSA molecules. The in vitro antimicrobial studies have been demonstrated that complex 3 has a superior antimicrobial activity than HSBL, complexes 1 and 2. According to the values of zone of inhibition, the antimicrobial ability has been increased in the order of 3 > 1 > 2 > HSBL. A significant decrease in percent cell viability has been suggested that complex 3 has remarkable cytotoxicity (IC50 = 15.7 ± 0.6 µg/mL) on human breast cancer (MCF-7) cells. Besides, their induced apoptosis pathway of cytotoxicity has been demonstrated by fluorescence staining techniques using AO/EB staining method. We hope this article will be very helpful for future research on the development of new anticancer agents.


Assuntos
Sondas de DNA/química , Metais/química , Nitrogênio/química , Oxigênio/química , Bases de Schiff/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Cristalografia por Raios X , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA