Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.186
Filtrar
2.
Science ; 369(6506)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820091

RESUMO

Oxygenic photosynthesis is the main process that drives life on earth. It starts with the harvesting of solar photons that, after transformation into electronic excitations, lead to charge separation in the reaction centers of photosystems I and II (PSI and PSII). These photosystems are large, modular pigment-protein complexes that work in series to fuel the formation of carbohydrates, concomitantly producing molecular oxygen. Recent advances in cryo-electron microscopy have enabled the determination of PSI and PSII structures in complex with light-harvesting components called "supercomplexes" from different organisms at near-atomic resolution. Here, we review the structural and spectroscopic aspects of PSI and PSII from plants and algae that directly relate to their light-harvesting properties, with special attention paid to the pathways and efficiency of excitation energy transfer and the regulatory aspects.


Assuntos
Proteínas de Algas/química , Clorófitas/enzimologia , Oxigênio/farmacologia , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química , Microscopia Crioeletrônica , Transferência de Energia , Oxigênio/metabolismo , Fótons
3.
Ecotoxicol Environ Saf ; 203: 111000, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736119

RESUMO

Microplastics are identified as a great threat to marine environments. However, knowledge of their impacts on phytoplankton, especially for the diatoms is scarce. Herein, the effects of different polyvinyl chloride (PVC) microplastic concentrations and contact times (24, 48, 72 and 96 h) on the Fv/Fm and cell density of Phaeodactylum tricornutum (B255), Chaetoceros gracilis (B13) and Thalassiosira sp. (B280) were investigated to evaluate the toxic effects of microplastics on marine diatoms. The effects of PVC microplastics on the morphology of the diatoms was observed by SEM. The order of sensitivity to 1 µm PVC microplastics among three marine diatoms was B13 > B280 > B255, showing that the toxic effects varied with different microalgae species. Furthermore, the presence of a siliceous cell wall played a minimal role in protecting cells from the physical attack of PVC microplastics, with no significant difference from the common cell wall. PVC microplastics caused dose-dependent adverse effects on three marine diatoms. High PVC concentrations (200 mg/L) reduced the chlorophyll content, inhibited Fv/Fm, and affected the photosynthesis of three marine diatoms. The PVC microplastics adsorbed and caused physical damage on the structure of algal cells. Interactions between PVC microplastics and diatoms may be the probable reason for the negative effects of PVC on diatoms.


Assuntos
Diatomáceas/efeitos dos fármacos , Microplásticos/toxicidade , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Clorofila/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Relação Dose-Resposta a Droga , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Fotossíntese/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Fatores de Tempo
4.
Aquat Toxicol ; 226: 105585, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32763644

RESUMO

Although excess ammoniacal-nitrogen (NH4+-N) results in the disturbance of various important biochemical and physiological processes, a detailed study on the effects of NH4+-N stress on the photosynthesis and global changes in protein levels in submerged macrophytes is still lacking. Here, the changes of excess NH4+-N on physiological parameters in Hydrilla verticillata (L.f.) Royle, a submerged macrophyte were investigated, including the contents of photosynthetic pigments, soluble sugars, net photosynthesis and respiration, glutamine synthetase (GS) and glutamate synthase (GOGAT) activities, chloroplast ultrastructure, chloroplast reactive oxygen species (ROS) accumulation and protein levels. Our results showed that the net photosynthetic rate and pigment content reached maximum values when the plants were treated with 1 and 2 mg L-1 NH4+-N, respectively, and decreased at NH4+-N concentrations at 5, 10, 15 and 20 mg L-1. This decrease might be caused by ROS accumulation. Compared that in 0.02 mg L-1 NH4+-N as a control, ROS generation in chloroplasts significantly increased in the presence of more than 2 mg L-1 NH4+-N. Consistently, the damages caused by over-accumulated ROS were observed in chloroplast ultrastructure, showing a loose thylakoid membranes and swollen grana/stroma lamellae. Furthermore, through proteomic analysis, we identified 91 differentially expressed protein spots. Among them, six proteins involved in photosynthesis decreased in abundance in response to excess NH4+-N. Surprisingly, the abundance of all the identified proteins that were involved in nitrogen assimilation and amino acid metabolism tended to increase under excess NH4+-N compared with the control, suggestive of the imbalanced carbon and nitrogen (C-N) metabolisms. In support, activated GS and GOGAT cycle was observed, evidenced by higher activities of GS and GOGAT enzymes. To our knowledge, this work is the first description that excess NH4+-N results in chloroplast ultrastructural damages and the first proteomic evidence to support that excess NH4+-N can lead to a decline in photosynthesis and imbalance of C-N metabolism in submerged macrophytes.


Assuntos
Amônia/toxicidade , Cloroplastos/ultraestrutura , Hydrocharitaceae/efeitos dos fármacos , Nitrogênio/toxicidade , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Amônia/metabolismo , Carbono/metabolismo , Cloroplastos/efeitos dos fármacos , Hydrocharitaceae/metabolismo , Nitrogênio/metabolismo , Proteômica , Poluentes Químicos da Água/metabolismo
5.
Ecotoxicol Environ Saf ; 202: 110955, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800229

RESUMO

The effects of cadmium (Cd) have been investigated in an aquatic plant Ottelia alismoides grown under low CO2. Under low CO2, no Cd treated O. alismoides operated three carbon dioxide-concentrating mechanisms (CCMs) efficiently, including HCO3- acquisition, C4 and CAM photosynthesis. After 4 days of treatment with 200 µM and 2000 µM Cd, O. alismoides exhibited an elevated Cd accumulation along with the increasing Cd concentration. Both Cd treatments induced appreciable phytotoxicities in O. alismoides. The leaves showed chlorosis symptoms and the anatomy as well as chloroplast ultrastructure were obviously damaged. Significant decreases in the content of pigments, chlorophyll fluorescence (Fv/Fm and Yield of PS II) and carbon isotope ratio (δ13C) were measured in leaf extracts of O. alismoides grown with both concentrations of Cd. In addition, the pH-drift technique showed that both Cd-treated O. alismoides plants could not uptake HCO3-. The maximum and minimum acidity in Cd-exposed O. alismoides were greatly decreased and the diurnal change of acidity was absent in both Cd treated plants. Furthermore, significant decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), pyruvate phosphate dikinase (PPDK) and phosphoenolpyruvate carboxylase (PEPC) activities were also found at Cd treated O. alismoides plants, indicating the disturbance within C4 cycle. The alterations in the functionality of CCMs in O. alismoides induced by Cd might be related with the inhibition of the enzymes such as carbonic anhydrase (CA) and PEPC involved in inorganic carbon fixation, and the destruction of chloroplasts, as well as the re-allocation of energy and nutrients involved in CCMs and Cd detoxification.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cádmio/toxicidade , Dióxido de Carbono/metabolismo , Hydrocharitaceae/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/metabolismo , Anidrases Carbônicas/metabolismo , Cloroplastos/metabolismo , Hydrocharitaceae/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Nat Commun ; 11(1): 4028, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788591

RESUMO

Changes in atmospheric CO2 concentration have played a central role in algal and plant adaptation and evolution. The commercially important red algal genus, Pyropia (Bangiales) appears to have responded to inorganic carbon (Ci) availability by evolving alternating heteromorphic generations that occupy distinct habitats. The leafy gametophyte inhabits the intertidal zone that undergoes frequent emersion, whereas the sporophyte conchocelis bores into mollusk shells. Here, we analyze a high-quality genome assembly of Pyropia yezoensis to elucidate the interplay between Ci availability and life cycle evolution. We find horizontal gene transfers from bacteria and expansion of gene families (e.g. carbonic anhydrase, anti-oxidative related genes), many of which show gametophyte-specific expression or significant up-regulation in gametophyte in response to dehydration. In conchocelis, the release of HCO3- from shell promoted by carbonic anhydrase provides a source of Ci. This hypothesis is supported by the incorporation of 13C isotope by conchocelis when co-cultured with 13C-labeled CaCO3.


Assuntos
Carbono/metabolismo , Genoma , Rodófitas/genética , Rodófitas/metabolismo , Movimentos da Água , Exoesqueleto/química , Animais , Antioxidantes/farmacologia , Composição de Bases/genética , Evolução Biológica , Carbonato de Cálcio/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Núcleo Celular/genética , Dosagem de Genes , Perfilação da Expressão Gênica , Transferência Genética Horizontal/genética , Moluscos , Fotossíntese/efeitos dos fármacos , Ploidias , Rodófitas/efeitos dos fármacos , Superóxido Dismutase/genética , Transcrição Genética/efeitos dos fármacos
7.
Oecologia ; 193(4): 925-935, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32749550

RESUMO

Clonal plants have more traits enabling individual persistence (larger belowground storage of buds and assimilates), whereas non-clonal plants have more traits enabling population persistence (a higher reliance on regeneration from seeds). This difference presumably makes those groups respond differently to disturbance. We asked whether this difference is already expressed in the first year of the plant's life. In a pot experiment with 17 congeneric pairs of clonal and non-clonal herbs, we investigated response to a disturbance at the individual level. We were interested whether the leaf C/N ratio (a proxy reflecting active growth and photosynthetic efficiency), the R/S ratio (a proxy for belowground storage) and the amount of compensated biomass differ between clonal and non-clonal herbs. Moreover, we asked whether compensation for the loss of aboveground biomass after disturbance can be predicted by the R/S ratio or explained by the leaf C/N ratio. We found that clonal herbs have higher leaf C/N and R/S ratios than non-clonal herbs. Under disturbance, the leaf C/N and R/S ratios decreased in the clonal herbs and increased in the non-clonal herbs. However, the clonal and non-clonal plants did not differ in biomass compensation ability. Neither the R/S ratio nor the leaf C/N ratio explained the compensation abilities of the herbs. These results show that even though the growth strategies of clonal and non-clonal plants and their reactions to disturbance are different, the groups are similarly capable of compensating for the loss of aboveground biomass. Clonal plants do not have an advantage over non-clonal plants under disturbance during their first year of life.


Assuntos
Folhas de Planta , Plantas , Biomassa , Fotossíntese
8.
Sci Total Environ ; 737: 139733, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783823

RESUMO

Cultures of Scytonema javanicum obtained from artificial medium are used to control desertification, and through the effective redistribution of nutrients, related environmental problems can be alleviated. Wastewater is considered to be a potential alternative medium for S. javanicum. However, the effect of temperature on the nutrient redistribution ability of S. javanicum cultured in wastewater has rarely been considered. Therefore, this study explores the effect of temperature on S. javanicum in wastewater. The results showed that a sufficient temperature increase (from 25 °C to 30 °C) increased the photosynthetic activity of photosynthetic system II (PSII), accelerated the accumulation rate of S. javanicum biomass, and improved the removal efficiency of nutrients in wastewater. However, an increasing temperature caused a decrease in the final accumulated biomass. When the temperature was above 35 °C, the ratio of the variable to maximal fluorescence (Fv/Fm) of S. javanicum decreased, thus, causing damage to PSII. The average Fv/Fm at 35 °C and 40 °C decreased by 10.49% and 72.37%, respectively, compared to that at 25 °C. By analysing the chlorophyll fluorescence induction kinetics (OJIP) curve after 30 days, the P phase at 30 °C increased by 15.47% relative to that at 25 °C, whereas that at 35 °C and 40 °C decreased by 45.54% and 86.37%, respectively. In particular, at 40 °C, the O-J-I-P phase transformed into the O-J (J = I = P) phase, which caused irreversible damage to the PSII of S. javanicum. Comprehensive scores were determined using the entropy weight method and revealed that 30 °C was the optimal temperature for the wastewater culture of S. javanicum. This temperature improved the biomass accumulation rate and wastewater transfer efficiency. These results provide a scientific basis for improving the efficiency of the coupling technology of wastewater treatment and desert algal cultivation.


Assuntos
Cianobactérias , Biomassa , Nutrientes , Fotossíntese , Temperatura , Águas Residuárias
9.
Bull Environ Contam Toxicol ; 105(2): 270-276, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32661664

RESUMO

Marigold (Calendula calypso) is a multipurpose ornamental plant, but its cadmium (Cd) tolerance and phytoremediation potential is unknown. The proposed study was carried out to unravel Cd partitioning, physiological and oxidative stress responses of C. calypso grown under Cd stress. Plants were grown for four months in pots having different soil Cd levels: 0, 25, 50, 75, and 100 mg kg-1 soil. Plant growth, biomass, photosynthetic pigments, leaf water contents, stomatal conductance, and membrane stability index were not decreased at 25 mg kg-1 Cd. At higher levels of Cd stress, activities of antioxidant enzymes (SOD, APX, CAT, POD) increased to mitigate H2O2 and lipid peroxidation. Cadmium uptake in plants increased with increasing soil Cd levels, and roots accumulated a greater portion of Cd, followed by shoots and flowers, respectively. On the basis of Cd accumulation and its tolerance, it was determined that C. calypso can be successfully grown for phytostabilization of Cd contaminated soils.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Calendula/fisiologia , Poluentes do Solo/metabolismo , Antioxidantes , Biomassa , Cádmio/análise , Peróxido de Hidrogênio , Neonicotinoides , Estresse Oxidativo , Fotossíntese , Folhas de Planta/química , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Tiazinas
10.
Bull Environ Contam Toxicol ; 105(2): 237-243, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32651610

RESUMO

We assessed the effects of carbon dioxide (CO2) and decabromodiphenyl ether (BDE-209, 0, 3 and 30 mg/kg) on rice (Oryza sativa L. cv. Wuyunjing) in field free-air CO2 enrichment system. Rice at elevated (580 ppm) CO2 had increased net photosynthetic rate, intercellular CO2 concentration, shoot biomass, yield and phosphorus content in grains. However, there were no significant changes in such parameters observed on rice at elevated CO2 combined with BDE-209 (3 and 30 mg/kg). Elevated CO2 alone had no significant effects on sugar or starch content in rice grains, whereas its combination with BDE-209 (3 mg/kg) significantly decreased grain sugar and starch content. In conclusion, rice reared in soil polluted by BDE-209 under elevated CO2 modulates the effects in grain feature.


Assuntos
Dióxido de Carbono/toxicidade , Éteres Difenil Halogenados/toxicidade , Oryza/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biomassa , Dióxido de Carbono/análise , China , Mudança Climática , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Éteres Difenil Halogenados/análise , Oryza/química , Fotossíntese/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise
11.
Ecotoxicol Environ Saf ; 202: 110856, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32629202

RESUMO

To explore the mechanisms underlying the action of the heavy metals Cd and Zn on the photosynthetic function of plant leaves, the effects of 100 µmol L-1 Cd and 200 µmol L-1 Zn stress (the exposure concentrations of Cd and Zn in the culture medium were 2.24 mg kg-1 and 5.36 mg kg-1) on the chlorophyll and carotenoid contents as well as the photosynthetic function of tobacco leaves (Long Jiang 911) were studied. The key proteins in these physiological processes were quantitatively analyzed using a TMT-based proteomics approach. Cd stress was found to inhibit the expression of key enzymes during chlorophyll synthesis in leaves, resulting in a decrease of the Chl content. However, Zn stress did not significantly influence the chlorophyll content. Leaves adapted to Zn stress by upregulating CAO expression and increase the Chl b content. Although the Car content in leaves did not significantly change under either Cd or Zn stress, the expressions of ZE and VDE during Car metabolism decreased significantly under Cd stress. This was accompanied by damages to the xanthophyll cycle and the NPQ-dependent energy dissipation mechanism. In contrast, under Zn stress, leaves adapted to Zn stress by increasing the expression of VDE, thus improving NPQ. Under Cd stress, the expressions of three sets of proteins were significantly down-regulated, including PSII donor-side proteins (PPD3, PPD6, OEE1, OEE2-1, OEE2-2, OEE2-3, and OEE3-2), receptor-side proteins (D1, D2, CP43, CP47, Cyt b559α, Cyt b559ß, PsbL, PsbQ, PsbR, Psb27-H1, and Psb28), and core proteins of the PSI reaction center (psaA, psaB, psaC, psaD, psaE-A, PsaE-B, psaF, psaG, psaH-1, psaK, psaL, psaN, and psaOL). In comparison, only eight of the above proteins (PPD6, OEE3-2, PsbL, PsbQ, Psb27-H1, psaL, and psaOL) were significantly down-regulated by Zn stress. Under Cd stress, both the donor side and the receptor side of PSII were damaged, and PSII and PSI experienced severe photoinhibition. However, Zn stress did not decrease either PSII or PSI activities in tobacco leaves. In addition, the expression of electron transport-related proteins (cytb6/f complex, PC, Fd, and FNR), ATPase subunits, Rubisco subunits, and RCA decreased significantly in leaves under Cd stress. However, no significant changes were observed in any of these proteins under Zn stress. Although Cd stress was found to up-regulate the expressions of PGRL1A and PGRL1B and induce an increase of PGR5/PGRL1-CEF in tobacco leaves, NDH-CEF was significantly inhibited. Under Zn stress, the expressions of ndhH and PGRL1A in leaves were significantly up-regulated, but there were no significant changes in either NDH-CEF or PGR5/PGRL-CEF. Under Cd stress, the expressions of proteins related to Fd-dependent nitrogen metabolism and reactive oxygen species (ROS) scavenging processes (e.g., FTR, Fd-NiR, and Fd-GOGAT) were significantly down-regulated in leaves. However, no significant changes of any of the above proteins were identified under Zn stress. In summary, Cd stress could inhibit the synthesis of chlorophyll in tobacco leaves, significantly down-regulate the expressions of photosynthesis-related proteins or subunits, and suppress both the xanthophyll cycle and NDH-CEF process. The expressions of proteins related to the Fd-dependent nitrogen metabolism and ROS scavenging were also significantly down-regulated, which blocked the photosynthetic electron transport, thus resulting in severe photoinhibition of both PSII and PSI. However, Zn stress had little effect on the photosynthetic function of tobacco leaves.


Assuntos
Cádmio/toxicidade , Carotenoides/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Tabaco/efeitos dos fármacos , Zinco/toxicidade , Cádmio/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteômica , Tabaco/metabolismo , Tabaco/fisiologia , Zinco/metabolismo
12.
PLoS One ; 15(7): e0235975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649704

RESUMO

Rice cultivar "Weiyou916" (Oryza sativa L. ssp. Indica) were cultured with control (10 mM NO3-) and nitrate deficient solution (0 mM NO3-) for four weeks. Nitrogen (N) deficiency significantly decreased the content of N and P, dry weight (DW) of the shoots and roots, but increased the ratio of root to shoot in O. sativa. N deficiency decreased the photosynthesis rate and the maximum quantum yield of primary photochemistry (Fv/Fm), however, increased the intercellular CO2 concentration and primary fluorescence (Fo). N deficiency significantly increased the production of H2O2 and membrane lipid peroxidation revealed as increased MDA content in O. sativa leaves. N deficiency significantly increased the contents of starch, sucrose, fructose, and malate, but did not change that of glucose and total soluble protein in O. sativa leaves. The accumulated carbohydrates and H2O2 might further accelerate biosynthesis of lignin in O. sativa leaves under N limitation. A total of 1635 genes showed differential expression in response to N deficiency revealed by Illumina sequencing. Gene Ontology (GO) analysis showed that 195 DEGs were found to highly enrich in nine GO terms. Most of DEGs involved in photosynthesis, biosynthesis of ethylene and gibberellins were downregulated, whereas most of DEGs involved in cellular transport, lignin biosynthesis and flavonoid metabolism were upregulated by N deficiency in O. sativa leaves. Results of real-time quantitative PCR (RT-qPCR) further verified the RNA-Seq data. For the first time, DEGs involved oxygen-evolving complex, phosphorus response and lignin biosynthesis were identified in rice leaves. Our RNA-Seq data provided a global view of transcriptomic profile of principal processes implicated in the adaptation of N deficiency in O. sativa and shed light on the candidate direction in rice breeding for green and sustainable agriculture.


Assuntos
Flavonoides/metabolismo , Lignina/metabolismo , Nitratos/metabolismo , Oryza/genética , Fotossíntese , Carboidratos/análise , Clorofila A/química , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oryza/metabolismo , Oxirredução , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , RNA de Plantas/química , RNA de Plantas/metabolismo , Análise de Sequência de RNA
13.
Huan Jing Ke Xue ; 41(6): 2679-2687, 2020 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608783

RESUMO

Picophytoplankton (<3 µm), comprising picocyanobacteria (PCY) and photosynthetic picoeukaryotes (PPEs), are considerably important in the material circulation and energy flow of aquatic ecosystems. To explore the temporal and spatial variation patterns of picophytoplankton and their correlations with environmental factors in lotic Yangtze-connected lakes, field in-situ investigations were performed on a monthly basis during the wet season (May to August) in 2019 in East Lake Dongting, a Yangtze-connected lake. The results indicated that both the Chla biomass and abundances of picophytoplankton exhibited significant spatial and temporal variability (P<0.05). The picophytoplankton Chla biomass showed an average concentration of 8.52 µg·L-1 and accounted for 41.6% to total phytoplankton on an average. From May to August, Chla biomass of picophytoplankton kept increasing with increasing temperature, especially in the north and south of the lake, and it was the lowest in the east of the lake. PCY dominated picophytoplankton abundance in East Lake Dongting and was 3.4 times the abundance of PPEs on an average. Similar spatial and temporal variation patterns were observed between PCY and PPEs. The abundances of PCY and PPEs both increased first and then decreased during the wet season. Spatially, picophytoplankton showed a trend to migrate from the northern lake to the southern lake from May to July, and the abundance significantly declined in August and peaked mainly in the north of the lake. The analysis results showed that picophytoplankton in East Lake Dongting exhibited significant spatial and temporal variability during the wet season; the water level and N:P ratio were determined to be the most important factors explaining the variation of the abundance proportion of PCY and PPEs.


Assuntos
Ecossistema , Lagos , China , Monitoramento Ambiental , Fotossíntese , Fitoplâncton , Estações do Ano
14.
Proc Natl Acad Sci U S A ; 117(30): 17599-17606, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647063

RESUMO

Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C40 diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C39 and C38 carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic-Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.


Assuntos
Cianobactérias/fisiologia , Fotossíntese , Enxofre/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Fotossíntese/genética , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo
15.
Chemosphere ; 259: 127356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650176

RESUMO

Growth of the most important nitrogen fixing cyanobacterium Nostoc muscorum is reported to be badly affected by the application of insecticides. To overcome their damaging effects, several strategies are being used. Out of these, some works on kinetin (KN, a synthetic cytokinin) has been recognized that it can overcome toxicity of insecticides in cyanobacteria. Besides this, it is now known that every hormone needs certain second messengers such as nitric oxide (NO) for its action. But implication of NO in KN-mediated regulation of insecticide toxicity is yet to be investigated. Hence in the current study, we have investigated the possible involvement of NO in KN-mediated regulation of cypermethrin toxicity in the cyanobacterium Nostoc muscorum. Cypermethrin decreased growth of Nostoc muscorum which was accompanied by decreased pigment contents and altered photosystem II (PS II) photochemistry that resulted in inhibition of photosynthetic process but KN significantly ameliorated cypermethrin toxicity. Cypermethrin induced production of free radicals (in-vivo and in-vitro) and weakened defensive mechanism (enzymatic and non-enzymatic defense system) which was restored by KN. Further, the results revealed that NG-nitro-l-arginine methyl ester (l-NAME, an inhibitor of nitric oxide synthase) worsened the effect of cypermethrin toxicity even in the presence of KN while 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, a scavenger of NO) reversed KN-mediated amelioration even in the presence of sodium nitroprusside (SNP, an NO donor), suggesting that endogenous NO is required for mitigation of cypermethrin toxicity. Overall, our results first time show that endogenous NO is essential for KN-mediated mitigation of cypermethrin toxicity in the Nostoc muscorum.


Assuntos
Citocininas/farmacologia , Nostoc muscorum/fisiologia , Reguladores de Crescimento de Planta/farmacologia , Polissacarídeos Bacterianos/metabolismo , Piretrinas/toxicidade , Cianobactérias/metabolismo , Homeostase/efeitos dos fármacos , Inseticidas/farmacologia , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Nostoc muscorum/efeitos dos fármacos , Nostoc muscorum/metabolismo , Fotoquímica , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/farmacologia
17.
Proc Natl Acad Sci U S A ; 117(30): 17499-17509, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32690715

RESUMO

Coping of evergreen conifers in boreal forests with freezing temperatures on bright winter days puts the photosynthetic machinery in great risk of oxidative damage. To survive harsh winter conditions, conifers have evolved a unique but poorly characterized photoprotection mechanism, a sustained form of nonphotochemical quenching (sustained NPQ). Here we focused on functional properties and underlying molecular mechanisms related to the development of sustained NPQ in Norway spruce (Picea abies). Data were collected during 4 consecutive years (2016 to 2019) from trees growing in sun and shade habitats. When day temperatures dropped below -4 °C, the specific N-terminally triply phosphorylated LHCB1 isoform (3p-LHCII) and phosphorylated PSBS (p-PSBS) could be detected in the thylakoid membrane. Development of sustained NPQ coincided with the highest level of 3p-LHCII and p-PSBS, occurring after prolonged coincidence of bright winter days and temperatures close to -10 °C. Artificial induction of both the sustained NPQ and recovery from naturally induced sustained NPQ provided information on differential dynamics and light-dependence of 3p-LHCII and p-PSBS accumulation as prerequisites for sustained NPQ. Data obtained collectively suggest three components related to sustained NPQ in spruce: 1) Freezing temperatures induce 3p-LHCII accumulation independently of light, which is suggested to initiate destacking of appressed thylakoid membranes due to increased electrostatic repulsion of adjacent membranes; 2) p-PSBS accumulation is both light- and temperature-dependent and closely linked to the initiation of sustained NPQ, which 3) in concert with PSII photoinhibition, is suggested to trigger sustained NPQ in spruce.


Assuntos
Fotossíntese , Picea/fisiologia , Estações do Ano , Proteínas das Membranas dos Tilacoides/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Meio Ambiente , Complexos de Proteínas Captadores de Luz/metabolismo , Noruega , Fosforilação , Espectrometria de Massas em Tandem , Proteínas das Membranas dos Tilacoides/química , Árvores
18.
PLoS One ; 15(7): e0235845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32639979

RESUMO

Drought is an important factor which limits growth of sugarcane. To elucidate the physiological and biochemical mechanisms of tolerance, a pot experiment was conducted at Sugarcane Research Institute, Kaiyuan, China. Two genotypes (Yuetang 93-159-sensitive and Yunzhe 05-51-tolerant), were subjected to three treatments; 70±5% (control), 50±5% (moderate drought) and 30±5% (severe drought) of soil field capacity. The results demonstrated that drought induced considerable decline in morpho-physiological, biochemical and anatomical parameters of both genotypes, with more pronounced detrimental effects on Yuetang 93-159 than on Yunzhe 05-51. Yunzhe 05-51 exhibited more tolerance by showing higher dry biomass, photosynthesis and antioxidant enzyme activities. Compared with Yuetang 93-159, Yunzhe 05-51 exhibited higher soluble sugar, soluble protein and proline contents under stress. Yunzhe 05-51 illustrated comparatively well-composed chloroplast structure under drought stress. It is concluded that the tolerance of Yunzhe 05-51 was attributed to improved antioxidant activities, osmolyte accumulation and enhanced photosynthesis. These findings may provide valuable information for future studies on molecular mechanism of tolerance.


Assuntos
Saccharum/genética , Aclimatação , Secas , Fotossíntese , Saccharum/fisiologia , Saccharum/ultraestrutura , Estresse Fisiológico
19.
Aquat Toxicol ; 226: 105559, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32652412

RESUMO

High nitrate (NO3--N) concentration is a growing aquatic risk concern worldwide. However, adverse effects of high NO3--N concentration on submerged macrophytes-epiphytic biofilms are unclear. In this study, the alterations in physiological changes, biofilms formation and chemical compositions were investigated on leaves of Vallisneria asiatica exposed to different NO3--N concentrations. The findings showed that 10 mg L-1NO3--N resulted in low photosynthetic efficiency by inhibiting chlorophyll content 26.2 % and decreased intrinsic efficiency of photosystem II significantly at 14th day post treatment. Malondialdehyde, several antioxidant enzyme activities (i.e., superoxide dismutase, peroxidase and catalase), and secondary metabolites (i.e., phenolic compounds and anthocyanin) were all significantly up-regulated with 10 mg L-1NO3--N, implied oxidative stress were stimulated. However, no significant alterations in these indicators were observed with 5 mg L-1NO3--N. Compared to control, 10 mg L-1NO3--N concentration significantly stimulated microbes growth in biofilm and reduced the roughness of leaf-biofilms surface, but it had little effect on the biofilms distribution (from single clone to blocks) as revealed by scanning electron microscope and multifractal analysis. Results from X-ray photoelectron spectroscopy analysis showed that the percentage of P, Cl, K and the ratio of O1 (-O-) /O2 (C = O) were higher in leaves of control than treatments with 10 mg L-1NO3--N, indicating that 10 mg L-1NO3--N concentration exhibited significant inhibition of chemical activity and nutrient uptake of the leaf surfaces. Overall, these results demonstrated that high NO3--N does stimulate the biofilm growth and can cause negative impacts on submerged macrophytes growth.


Assuntos
Biofilmes/crescimento & desenvolvimento , Hydrocharitaceae/efeitos dos fármacos , Nitratos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biofilmes/efeitos dos fármacos , Catalase/metabolismo , Clorofila/metabolismo , Hydrocharitaceae/crescimento & desenvolvimento , Hydrocharitaceae/metabolismo , Hydrocharitaceae/microbiologia , Malondialdeído/metabolismo , Peroxidases/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Superóxido Dismutase/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(29): 17418-17428, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636267

RESUMO

Carboxysomes are membrane-free organelles for carbon assimilation in cyanobacteria. The carboxysome consists of a proteinaceous shell that structurally resembles virus capsids and internal enzymes including ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the primary carbon-fixing enzyme in photosynthesis. The formation of carboxysomes requires hierarchical self-assembly of thousands of protein subunits, initiated from Rubisco assembly and packaging to shell encapsulation. Here we study the role of Rubisco assembly factor 1 (Raf1) in Rubisco assembly and carboxysome formation in a model cyanobacterium, Synechococcus elongatus PCC7942 (Syn7942). Cryo-electron microscopy reveals that Raf1 facilitates Rubisco assembly by mediating RbcL dimer formation and dimer-dimer interactions. Syn7942 cells lacking Raf1 are unable to form canonical intact carboxysomes but generate a large number of intermediate assemblies comprising Rubisco, CcaA, CcmM, and CcmN without shell encapsulation and a low abundance of carboxysome-like structures with reduced dimensions and irregular shell shapes and internal organization. As a consequence, the Raf1-depleted cells exhibit reduced Rubisco content, CO2-fixing activity, and cell growth. Our results provide mechanistic insight into the chaperone-assisted Rubisco assembly and biogenesis of carboxysomes. Advanced understanding of the biogenesis and stepwise formation process of the biogeochemically important organelle may inform strategies for heterologous engineering of functional CO2-fixing modules to improve photosynthesis.


Assuntos
Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Synechococcus/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Microscopia Crioeletrônica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Fotossíntese , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Synechococcus/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA