Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194.417
Filtrar
1.
Chemosphere ; 255: 126999, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32679628

RESUMO

Currently there are few reports on the combined immunotoxicity of zearaleone (ZEA) and deoxynivalenol (DON). Since the two coexist naturally, it is necessary to understand the immunotoxicity caused by the two mycotoxins alone and in combination. To examine T lymphocytes activation and immune effect during activation, we used mouse primary spleen T lymphocytes as the experimental material and concanavalin (Con A) as the stimulator. The effects of ZEA, DON, and their combined exposure on T lymphocytes immune related function and the relationship between the activation of the mitogen-activated protein kinase (MAPK) signaling pathway and mycotoxin induced T lymphocytes apoptosis were studied in vitro. Specifically, T lymphocytes were isolated from primary mouse splenic lymphocytes, activated by Con A and then exposed to different concentrations of ZEA, DON, and their combinations. Our results showed that ZEA and DON alone and their combinations (20:1) can decrease the cell viability of T lymphocytes activated by Con A. The inhibitory effect of the combined groups was greater than that of the single mycotoxins, showing a synergistic effect. In addition, single or combined mycotoxins can lead to intracellular and surface ultrastructure damage of T lymphocytes, inhibit the expression of CD25 and CD278 and inhibit the synthesis of effect molecules poreforming protein (PFP), granzyme A (GZMA), and tumor necrosis factor-α (TNF-α). Meanwhile, the single mycotoxin or combined mycotoxins can promote the apoptosis of T lymphocytes which was accompanied by the overactivation of MAPK. After using the inhibitors of extracellular regulated protein kinases (ERK) and c-Jun N-terminal kinase (JNK) in the MAPK pathway, we found that the apoptosis of the cells induced by the ZEA was significantly decreased, and the apoptosis of the cells induced by DON had no significant changes. This suggests that the activation of MAPK induced by ZEA can promote the apoptosis of T lymphocytes, but the activation of MAPK induced by DON is not directly related to T cell apoptosis.


Assuntos
Imunotoxinas/toxicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Tricotecenos/toxicidade , Zearalenona/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-2 , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Micotoxinas/toxicidade , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa
2.
Bone Joint J ; 102-B(7_Supple_B): 116-121, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32600200

RESUMO

AIMS: This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys. METHODS: Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment. RESULTS: On stainless steel, both nonactivated and activated cell groups were shown to have a significant increase in metal ion release for Cr, Fe, and Ni (p < 0.001, p = 0.002, and p = 0.020 respectively) compared with medium only and showed macrophage-sized corrosive pits on the stainless steel surface. On titanium alloy discs there was a significant increase in aluminum (p < 0.001) among all groups compared with medium only. CONCLUSION: These results indicated that macrophages were able to attach to and affect the oxide surface of stainless steel and titanium alloy discs. Cite this article: Bone Joint J 2020;102-B(7 Supple B):116-121.


Assuntos
Prótese Articular , Macrófagos/química , Aço Inoxidável , Titânio , Vitálio , Ligas , Animais , Sobrevivência Celular , Cromo/análise , Meios de Cultura , Íons , Ferro/análise , Camundongos , Microscopia Eletrônica de Varredura , Níquel/análise , Óxido Nítrico/análise
3.
Anticancer Res ; 40(7): 3765-3779, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32620616

RESUMO

BACKGROUND/AIM: Apoptotic peptidase activating factor 1 (APAF-1) is essential regulator of apoptosis and inactivation by DNA methylation is common event in numerous cancer types. We investigated the regulation of APAF-1 through DNA methylation in pancreatic cancer. MATERIALS AND METHODS: Datasets from 44 patients after pancreatoduodenectomy and the pancreatic adenocarcinoma (PDAC) cell lines Capan-2 and MIA PaCa-2 treated with decitabine were analyzed by RT-PCR, immunoblotting, methylation-specific PCR analysis, apoptosis and viability assays to identify effects of APAF-1 regulation. RESULTS: APAF-1 mRNA and protein levels were significantly down-regulated, and APAF-1 methylation status was associated with perineural invasion in PDAC. Decitabine inhibited cell viability and increased apoptosis rates, however failed to restore APAF-1 mRNA and protein levels in cells. CONCLUSION: APAF-1 gene hypermethylation may contribute to the progression of PDAC through perineural invasion. Decitabine could sensitize pancreatic cancer cells to apoptosis and growth retardation, however, not directly through the APAF-1 demethylation process.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/genética , Metilação de DNA/genética , Epigênese Genética/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Idoso , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Progressão da Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , RNA Mensageiro/genética
4.
Int J Nanomedicine ; 15: 3303-3318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494131

RESUMO

Background: Poultry vaccine has limited choices of adjuvants and is facing severe threat of infectious diseases due to ineffective of widely used commercial vaccines. Thus, development of novel adjuvant that offers safe and effective immunity is of urgent need. Materials and Methods: The present research engineers a novel chicken adjuvant with potent immune-potentiating capability by incorporating avian toll-like receptor 21 (TLR21) agonist CpG ODN 2007 with a poly(lactic-co-glycolic acid) (PLGA)-based hollow nanoparticle platform (CpG-NP), which subsequently assessed ex vivo and in vivo. Results: CpG-NPs with an average diameter of 164 nm capable of sustained release of CpG for up to 96 hours were successfully prepared. With the ex vivo model of chicken bone marrow-derived dendritic cells (chBMDCs), CpG-NP was engulfed effectively and found to induce DC maturation, promoting dendrite formation and upregulation of CD40, CD80 and CCR7. In addition to enhanced expression of IL-1ß, IL-6, IL-12 and IFN-γ, 53/84 immune-related genes were found to be stimulated in CpG-NP-treated chBMDCs, whereas only 39 of such genes were stimulated in free CpG-treated cells. These upregulated genes suggest immune skewing toward T helper cell 1 bias and evidence of improved mucosal immunity upon vaccination with the CpG-NP. The CpG-NP-treated chBMDCs showed protective effects to DF-1 cells against avian influenza virus H6N1 infection. Upon subsequent coupling with infectious bronchitis virus subunit antigen administration, chickens were immunostimulated to acquire higher humoral immune response and protective response against viral challenge. Conclustion: This work presents a novel hollow CpG-NP formulation, demonstrating effective and long-lasting immunostimulatory ability ex vivo and in vivo for chickens, as systemically compared to free CpG. This enhanced immune stimulation benefits from high stability and controlled release of internal component of nanoparticles that improve cellular delivery, lymphoid organ targeting and sustainable DC activation. CpG-NP has broad application potential in antiviral and vaccine development.


Assuntos
Antivirais/farmacologia , Galinhas/imunologia , Imunidade/efeitos dos fármacos , Nanopartículas/química , Oligodesoxirribonucleotídeos/farmacologia , Polímeros/química , Vacinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Cães , Imunidade Humoral/efeitos dos fármacos , Imunização , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Células Madin Darby de Rim Canino , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
5.
Int J Nanomedicine ; 15: 3319-3331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494132

RESUMO

Background: It is of great significance to develop intelligent co-delivery systems for cancer chemotherapy with improved therapeutic efficacy and few side-effects. Materials and Methods: Here, we reported a co-delivery system based on pH-sensitive polyprodrug micelles for simultaneous delivery of doxorubicin (DOX) and paclitaxel (PTX) as a combination chemotherapy with pH-triggered drug release profiles. The physicochemical properties, drug release profiles and mechanism, and cytotoxicity of PTX/DOX-PMs have been thoroughly investigated. Results and Discussion: The pH-sensitive polyprodrug was used as nanocarrier, and PTX was encapsulated into the micelles with high drug-loading content (25.6%). The critical micelle concentration (CMC) was about 3.16 mg/L, indicating the system could form the micelles at low concentration. The particle size of PTX/DOX-PMs was 110.5 nm, and increased to approximately 140 nm after incubation for 5 days which showed that the PTX/DOX-PMs had high serum stability. With decrease in pH value, the particle size first increased, and thenwas no longer detectable. Similar change trend was observed for CMC values. The zetapotential increased sharply with decrease in pH. These results demonstrated the pHsensitivity of PTX/DOX-PMs. In vitro drug release experiments and study on release mechanism showed that the drug release rate and accumulative release for PTX and DOX were dependent on the pH, showing the pH-triggered drug release profiles. Cytotoxicity assay displayed that the block copolymer showed negligible cytotoxicity, while the PTX/DOX-PMs possessed high cytotoxic effect against several tumor cell lines compared with free drugs and control. Conclusion: All the results demonstrated that the co-delivery system based on pH-sensitive polyprodrug could be a potent nanomedicine for combination cancer chemotherapy. In addition, construction based on polyprodrug and chemical drug could be a useful method to prepare multifunctional nanomedicine.


Assuntos
Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Micelas , Neoplasias/tratamento farmacológico , Paclitaxel/uso terapêutico , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Células NIH 3T3 , Neoplasias/patologia , Paclitaxel/farmacologia , Tamanho da Partícula , Polímeros/química , Eletricidade Estática
6.
Int J Nanomedicine ; 15: 3347-3362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494134

RESUMO

Introduction: Temozolomide (TMZ) is the first-line chemotherapeutic option to treat glioma; however, its efficacy and clinical application are limited by its drug resistance properties. Polo-like kinase 1 (PLK1)-targeted therapy causes G2/M arrest and increases the sensitivity of glioma to TMZ. Therefore, to limit TMZ resistance in glioma, an angiopep-2 (A2)-modified polymeric micelle (A2PEC) embedded with TMZ and a small interfering RNA (siRNA) targeting PLK1 (siPLK1) was developed (TMZ-A2PEC/siPLK). Materials and Methods: TMZ was encapsulated by A2-PEG-PEI-PCL (A2PEC) through the hydrophobic interaction, and siPLK1 was complexed with the TMZ-A2PEC through electrostatic interaction. Then, an angiopep-2 (A2) modified polymeric micelle (A2PEC) embedding TMZ and siRNA targeting polo-like kinase 1 (siPLK1) was developed (TMZ-A2PEC/siPLK). Results: In vitro experiments indicated that TMZ-A2PEC/siPLK effectively enhanced the cellular uptake of TMZ and siPLK1 and resulted in significant cell apoptosis and cytotoxicity of glioma cells. In vivo experiments showed that glioma growth was inhibited, and the survival time of the animals was prolonged remarkably after TMZ-A2PEC/siPLK1 was injected via their tail vein. Discussion: The results demonstrate that the combination of TMZ and siPLK1 in A2PEC could enhance the efficacy of TMZ in treating glioma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Nanopartículas/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/administração & dosagem , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Temozolomida/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento
7.
Int J Nanomedicine ; 15: 3605-3620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547017

RESUMO

Purpose: Osteonecrosis of the femoral head (ONFH) is a chronic and irreversible disease that eventually develops into a joint collapse and results in joint dysfunction. Early intervention and treatment are essential for preserving the joints and avoiding hip replacement. In this study, a system of human umbilical mesenchymal stem cells-supermagnetic iron oxide nanoparticles (NPs) @polydopamine (SCIOPs) was constructed. The magnetic targeting system gathers in the lesion area, inhibits the apoptosis of bone cells, enhances osteogenic effect, and effectively treats ONFH under external magnetic field. Materials and Methods: The supermagnetic iron oxide NPs @polydopamine (SPION@PDA NPs) were characterized by transmission electron microscopy and zeta potential, respectively. The effects of SPION@PDA NPs on the viability, proliferation, and differentiation of stem cells were detected by the CCK8 method, flow cytometry, and staining, respectively. The serum inflammatory indicators were detected by Luminex method. The bone mass of the femoral head was analyzed by micro computed tomography. The expression of apoptosis and osteoblast-related cytokines was detected by Western blotting. The osteogenesis of the femoral head was detected by histological and immunohistochemical sections. Results: The SCIOPs decreased the pro-inflammatory factors, and the micro CT showed that the bone repair of the femoral head was enhanced after treatment. The hematoxylin and eosin sections also showed an increase in the osteogenesis in the femoral head. Western blotting results showed and increased expression of anti-apoptotic proteins Akt and Bcl-2, decreased expression of apoptotic proteins caspase-3 and Bad, and increased expression of osteogenic proteins Runx-2 and Osterix in the femoral head. Conclusion: Under the effect of magnetic field and homing ability of stem cells, SCIOPs inhibited the apoptosis of osteoblasts, improved the proliferation ability of osteoblasts, and promoted bone repair in the femoral head through the Akt/Bcl-2/Bad/caspase-3 signaling pathway, thereby optimizing the tissue repair ability.


Assuntos
Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/terapia , Glucocorticoides/efeitos adversos , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Hemólise/efeitos dos fármacos , Humanos , Indóis/química , Nanopartículas de Magnetita/toxicidade , Nanopartículas de Magnetita/ultraestrutura , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Polímeros/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Microtomografia por Raio-X , Proteína de Morte Celular Associada a bcl/metabolismo
8.
Int J Nanomedicine ; 15: 3649-3667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547020

RESUMO

Introduction: The polyphenolic spice and food coloring ingredient curcumin has beneficial effects in a broad variety of inflammatory diseases. Amongst them, curcumin has been shown to attenuate microglia reaction and prevent from glial scar formation in spinal cord and brain injuries. Methods: We developed a protocol for the efficient encapsulation of curcumin as a model for anti-inflammatory drugs yielding long-term stable, non-toxic liposomes with favorable physicochemical properties. Subsequently, we evaluate the effects of liposomal curcumin in experimental models for neuroinflammation and reactive astrogliosis. Results: We could show that liposomal curcumin can efficiently reduce the reactivity of human microglia and astrocytes and preserve tissue integrity of murine organotypic cortex slices. Discussion and Perspective: In perspective, we want to administer this curcumin formulation in brain implant coatings to prevent neuroinflammation and glial scar formation as foreign body responses of the brain towards implanted materials.


Assuntos
Encéfalo/patologia , Curcumina/uso terapêutico , Gliose/tratamento farmacológico , Inflamação/tratamento farmacológico , Neuroglia/patologia , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Encéfalo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Humanos , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lipossomos , Camundongos , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Neuroglia/efeitos dos fármacos
9.
PLoS Biol ; 18(6): e3000687, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32520957

RESUMO

In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.


Assuntos
Antígeno B7-H1/metabolismo , Polaridade Celular , Endorribonucleases/metabolismo , Macrófagos/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antígeno CD11b/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Modelos Lineares , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Neoplasias/metabolismo , Fenótipo , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/metabolismo
10.
Mar Pollut Bull ; 156: 111278, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510417

RESUMO

Plastics of different sizes (micro- and nano-sized) are often identified in aquatic environments. Nevertheless, their influence on marine organisms has not been widely investigated. In this study, the responses of the microalga Chlorella vulgaris to micro- and nanoplastics exposure were examined using long term toxicity test. The plastics tested were carboxyl-functionalized and non-functionalized polystyrene of 20, 50 and 500 nm in diameter. A reduction in algal cell viability and chlorophyll a concentration has been observed after exposure to the small sizes (20 and 50 nm) of plastics. Lactate dehydrogenase activity and reactive oxygen species concentration/production were significantly higher after exposure to the 20 nm nanoplastics than that of control confirming the stress condition. Fourier transform infrared (FTIR) spectroscopy analysis proved the attachment of nanoplastics to microalgae and rearrangement of extracellular polymeric substances. The cellular stress appeared as increased cell size, deformed cell wall and increased volume of starch grains.


Assuntos
Chlorella vulgaris , Microalgas , Poluentes Químicos da Água , Sobrevivência Celular , Clorofila A , Estresse Oxidativo , Poliestirenos
11.
Toxicol Lett ; 331: 227-234, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522578

RESUMO

An important mechanism of chemical toxicity is the induction of oxidative stress through the production of excess reactive oxygen species (ROS). In this study, we show that the level of drug-induced ROS production between NRK52E and HepG2 cells is significantly different for several marketed drugs and a number of Takeda's internal proprietary compounds. Nifedipine, a calcium channel blocker and the initial focus of the study, was demonstrated to promote in vitro ROS production and a decrease in cell viability in NRK52E cells but not HepG2 cells. ROS production after nifedipine treatment was inhibited by a NOX inhibitor (GKT136901) but not the mitochondrial NADH dehydrogenase inhibitor, rotenone, suggesting that nifedipine decreases NRK52E cell viability primarily through a NOX-mediated pathway. To understand the breadth of NOX-mediated ROS production, 12 commercially available compounds that are structurally and/or pharmacologically related to nifedipine as well as 172 internal Takeda candidate drugs, were also evaluated against these two cell types. Over 15 % of compounds not cytotoxic to HepG2 cells (below 50 µM) were cytotoxic to NRK52E cells. Our results suggest that a combination of cell viability data from both NRK52E and HepG2 cells was superior for the prediction of in vivo toxicity findings when compared to use of only one cell line. Further, the NRK52E cell viability assay is a good predictor of NOX-mediated ROS production and can be used as a follow up assay following a negative HepG2 response to aid in the selection of suitable compounds for in vivo toxicity studies.


Assuntos
Células Epiteliais/efeitos dos fármacos , Rim/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Bioensaio , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Drogas em Investigação/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Hep G2 , Humanos , Concentração Inibidora 50 , Rim/metabolismo , Rim/patologia , NADPH Oxidase 4/genética , Nifedipino/toxicidade
12.
Toxicol Lett ; 331: 200-207, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569802

RESUMO

BACKGROUND: Harmful and potential harmful chemicals (HPHCs) and oxidative stress of macrophages are major factors responsible for smoking-caused chronic respiratory diseases. However, comparisons of HPHCs among heat not burn (HnB) product and ultra-light cigarette and their induced oxidative stress of macrophages have not been investigated. AIM: The study detected HPHCs deliveries from HnB and ultra-light and measured their induced oxidative stress of macrophages cultured at air-liquid interface (ALI). METHODS: Total particulate matter, tar and 28 chemicals delivered from HnB, ultra-light and 3R4F cigarettes were determined. Mouse mononuclear macrophages at ALI were exposed to the aerosol of three tobacco products. Cell viability was measured by MTT assay. Reduced glutathione was detected by colorimetry method. Reactive oxygen species (ROS) was determined by fluorescence method. RESULTS: The results showed levels of 26 common HPHCs from both HnB product and ultra-light cigarette were less than that from 3R4F cigarette. HnB product delivered formaldehyde, acetaldehyde, propanal, butyraldehyde and crotonaldehyde more than ultra-light cigarette. The levels of 21 HPHCs were lower in the HnB product compared to the ultra-light cigarette. At the same exposure dose and time, the order of cell viability induced by aerosol of that was HnB > ultra-light > 3R4F, the order of content of intracellular reduced glutathione induced by aerosol of that was HnB > ultra-light > 3R4F. It showed no significant difference of ROS level between ultra-light and HnB in each designed exposure dose. HnB induced more ROS than ultra-light cigarette in each designed exposure time. CONCLUSION: Conclusively, most HPHCs from HnB were lower than that from ultra-light, while certain harmful chemicals were higher than ultra-light, e.g., carbonyl compounds. HnB-induced oxidative stress of macrophages is less than ultra-light cigarette.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Substâncias Perigosas/toxicidade , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Produtos do Tabaco , Aerossóis , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Substâncias Perigosas/isolamento & purificação , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fumar/metabolismo
13.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(1): 62-66, 2020 Jan 28.
Artigo em Chinês | MEDLINE | ID: mdl-32476374

RESUMO

OBJECTIVE: To investigate the effects of cerium oxide (CeO2) nanoparticles on the viabilities of nerve cells PC12 and SH-SY5Y. METHODS: CeO2 nanoparticles were synthesized, structures were characterized and properties were evaluated. PC12 cells and SH-SY5Y cells were treated with CeO2 nanoparticles at different concentrations (1, 2.5, 5, 10, 25, 50, 75, 100, 150 µg/ml) for 24 h and the cell viability was measured by MTT assay. Then PC12 cells and SH-SY5Y cells were co-treated with CeO2 and active oxygen scavenger NAC and the cells were stained with DCFH-DA probe for ROS. The number of cells and the fluorescence intensity were observed under a fluorescent inverted microscope. Differences were assessed by one-way ANOVA. RESULTS: After treatment with CeO2 nanoparticles, the viabilities of both PC12 cells (P<0.01) and SH-SY5Y cells (P<0.01) were decreased comparing with the control group. After staining with DCFH-DA probe, the fluorescence intensity of the nerve cells was enhanced depending on the concentration of CeO2 nanoparticles suggesting that CeO2 induced the generation of reactive oxygen species (ROS). The fluorescence intensity of PC12 cells was decreased after CeO2 nanoparticles (100 µg/ml) co-treatment with active oxygen scavenger NAC. Compared with CeO2 nanoparticles alone at 25 µg/ml (P<0.01), 50 µg/ml (P<0.01), 75 µg/ml (P<0.01), 100 µg/ml (P<0.01), the cell viability was significantly increased after co-treatment with NAC. CONCLUSION: CeO2 nanoparticles has a negative effect on the viabilities of nerve cells PC12 and SH-SY5Y, and the effect might be depend on ROS.


Assuntos
Sobrevivência Celular , Cério/farmacologia , Nanopartículas , Neurônios/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
14.
J Cancer Res Clin Oncol ; 146(7): 1751-1764, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32377840

RESUMO

PURPOSE: Although important for apoptosis, the signaling pathway involving MOAP-1(Modulator of Apoptosis 1), RASSF1A (RAS association domain family 1A), and Bax (Bcl-2 associated X protein) is likely to be dysfunctional in many types of human cancers due to mechanisms associated with gene mutation and DNA hyper-methylation. The purpose of the present study was to assess the potential impact of generating physiologically relevant signaling pathway mediated by MOAP-1, Bax, and RASSF1A (MBR) in cancer cells and chemo-drug resistant cancer cells. METHODS: The tricistronic expression construct that encodes MOAP-1, Bax, and RASSF1A (MBR) or its mutant, MOAP-1∆BH3L, Bax and RASSF1A (MBRX) was expressed from an IRES (Internal Ribosome Entry Site)-based tricistronic expression vector in human breast cancer cells, including MCF-7, MCF-7-CR (cisplatin resistant) and triple negative breast cancer cells, BMET05, for functional characterization through in vitro and in vivo models. RESULTS: Transient expression of MBR potently promoted dose-dependent apoptotic signaling and chemo-sensitization in the cancer cells, as evidenced by loss of cell viability, nuclei condensation and Annexin-V positive staining while stable expression of MBR in MCF-7 cells significantly reduced the number of MBR stable clone by 86% and the stable clone exhibited robust chemo-drug sensitivity. In contrast, MBRX stable clone exhibited chemo-drug resistance while transiently over-expressed MOAP-1ΔBH3L inhibited the apoptotic activity of MBR. Moreover, the spheroids derived from the MBR stable clone displayed enhanced chemo-sensitivity and apoptotic activity. In mouse xenograft model, the tumors derived from MBR stable clone showed relatively high level of tumor growth retardation associated with the increase in apoptotic activity, leading to the decreases in both tumor weight and volume. CONCLUSIONS: Expression of MBR in cancer cells induces apoptotic cell death with enhanced chemo-sensitization requiring the BH3L domain of MOAP-1. In animal model, the expression of MBR significantly reduces the growth of tumors, suggesting that MBR is a potent apoptotic sensitizer with potential therapeutic benefits for cancer treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/genética , Proteína X Associada a bcl-2/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Genes Reporter , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/metabolismo
15.
Toxicon ; 181: 82-90, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32371067

RESUMO

Ochratoxin A (OTA), one of the most deleterious mycotoxins, could cause a variety of toxicological effects especially nephrotoxicity in animals and humans. Taurine, a wide-distributed cytoprotective amino acid, plays an important role as a basic factor for maintaining cellular integrity homeostasis. However, the potential effect of taurine in OTA-induced nephrotoxicity remains unknown. In the present study, we demonstrated that OTA treatment at 4.0-8.0 µM increased apoptosis in PK-15 cells as shown by increased the ratio of apoptosis and protein expression of Bax and cleaved-caspase-3, decreased protein expression of Bcl-2. Meantime, OTA treatment triggered autophagy, as indicated by markedly increased the protein expression of LC3-II and fluorescence intensity of GFP-LC3 dots. Taurine supplementation decreased OTA-induced cytotoxicity and attenuated apoptosis as shown by the decreased Annexin V/PI staining and the decreased expression of apoptosis-related proteins including Bax and caspase-3. Meanwhile, taurine attenuated OTA-induced autophagy by decreased the protein expression of LC3-II and fluorescence intensity of GFP-LC3 dots to maintain cellular homeostasis. In conclusion, taurine treatment could alleviate OTA-induced apoptosis and inhibit the triggered autophagy in PK-15 cells. Our study provides supportive data for the potential roles of taurine in reducing OTA-induced renal toxicity.


Assuntos
Ocratoxinas/toxicidade , Taurina/metabolismo , Animais , Apoptose , Autofagia , Sobrevivência Celular
16.
Toxicol Lett ; 331: 22-32, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439581

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is the most frequent type of post-transcriptional nucleotide conversion in humans. It is known that innate abnormalities of A-to-I RNA editing are associated with the risk of certain diseases, such as amyotrophic lateral sclerosis. Extrinsic factors that modulate ADAR-mediated RNA editing remain to be clarified. In this study, we investigated the possibility that cigarette smoking may influence the expression of ADAR and that the changes may be biologically significant. Treatment of human lung adenocarcinoma A549 cells with cigarette smoke extract (CSE) induced a significant 50% decrease in ADAR1 protein levels. Since the decrease was counteracted by cotreatment with chloroquine, the CSE-dependent decrease in the ADAR1 protein levels may be due to the activation of autophagy. In addition to the in vitro study, we performed an in vivo study in mice and found a decrease in pulmonary Adar1 protein expression induced by cigarette smoking. Then, we investigated the biological significance of decreased ADAR1 expression. We found that knockdown of ADAR1 in A549 cells by siRNA resulted in an increase in the levels of protein carbonyl, a marker of oxidative stress. Moreover, knockdown of ADAR1 triggered a decrease in super oxide dismutase activity and heme oxygenase-1 expression, suggesting that ADAR1 plays a role to suppress oxidative stress. In conclusion, we show that ADAR1 expression is decreased by cigarette smoking and is a factor that contributes to the enhanced intracellular oxidative stress caused by cigarette smoking.


Assuntos
Adenosina Desaminase/genética , Estresse Oxidativo/efeitos dos fármacos , Edição de RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Fumaça/efeitos adversos , Produtos do Tabaco , Células A549 , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Humanos , Estresse Oxidativo/genética
17.
Toxicol Lett ; 331: 82-91, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32461003

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a critical nuclear transcription factor for adaptation to hypoxia; its regulatable subunit, HIF-1α, is a cytoprotective regulatory factor. We examined the effects of methylmercury (MeHg) in rat adrenal pheochromocytoma (PC12) cells and the rat hepatocyte cell line BRL. MeHg treatment led to time- and concentration-dependent toxicity in both lines with statistically significant cytotoxic effects at 5 µM and 10 µM in PC12 and BRL, respectively, at 0.5 h. HIF-1α protein levels were significantly decreased at 2.5 (PC12) and 5 (BRL) µM MeHg. Furthermore, MeHg reduced the protein levels of HIF-1α and its target genes (glucose transporter-1, vascular endothelial growth factor-A and erythropoietin). Overexpression of HIF-1α significantly attenuated MeHg-induced toxicity in both cell types. Notably, cobalt chloride, a pharmacological inducer of HIF-1α, significantly attenuated MeHg-induced toxicity in BRL but not PC12. In both cell lines, an inhibitor of prolyl hydroxylase, 3, 4-dihydroxybenzoic acid, and the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal(MG132), antagonized MeHg toxicity, while 2-methoxyestradiol, a HIF-1α inhibitor, significantly increased it. These data establish that: (a) neuron-like PC12 cells are more sensitive to MeHg than non-neuronal BRL cells; (b) HIF-1α plays a similar role in MeHg-induced toxicity in both cell lines; and (c) upregulation of HIF-1α offers general cytoprotection against MeHg toxicity in PC12 and BRL cell lines.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Compostos de Metilmercúrio/toxicidade , Neurônios/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células PC12 , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Regulação para Cima
18.
Mol Pharmacol ; 98(1): 24-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362585

RESUMO

High-dose synthetic estrogen therapy was the standard treatment of advanced breast cancer for three decades until the discovery of tamoxifen. A range of substituted triphenylethylene synthetic estrogens and diethylstilbestrol were used. It is now known that low doses of estrogens can cause apoptosis in long-term estrogen deprived (LTED) breast cancer cells resistant to antiestrogens. This action of estrogen can explain the reduced breast cancer incidence in postmenopausal women over 60 who are taking conjugated equine estrogens and the beneficial effect of low-dose estrogen treatment of patients with acquired aromatase inhibitor resistance in clinical trials. To decipher the molecular mechanism of estrogens at the estrogen receptor (ER) complex by different types of estrogens-planar [17ß-estradiol (E2)] and angular triphenylethylene (TPE) derivatives-we have synthesized a small series of compounds with either no substitutions on the TPE phenyl ring containing the antiestrogenic side chain of endoxifen or a free hydroxyl. In the first week of treatment with E2 the LTED cells undergo apoptosis completely. By contrast, the test TPE derivatives act as antiestrogens with a free para-hydroxyl on the phenyl ring that contains an antiestrogenic side chain in endoxifen. This inhibits early E2-induced apoptosis if a free hydroxyl is present. No substitution at the site occupied by the antiestrogenic side chain of endoxifen results in early apoptosis similar to planar E2 The TPE compounds recruit coregulators to the ER differentially and predictably, leading to delayed apoptosis in these cells. SIGNIFICANCE STATEMENT: In this paper we investigate the role of the structure-function relationship of a panel of synthetic triphenylethylene (TPE) derivatives and a novel mechanism of estrogen-induced cell death in breast cancer, which is now clinically relevant. Our study indicates that these TPE derivatives, depending on the positioning of the hydroxyl groups, induce various conformations of the estrogen receptor's ligand-binding domain, which in turn produces differential recruitment of coregulators and subsequently different apoptotic effects on the antiestrogen-resistant breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Antagonistas de Estrogênios/síntese química , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estilbenos/síntese química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estradiol/química , Estradiol/farmacologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Estilbenos/química , Estilbenos/farmacologia , Relação Estrutura-Atividade
19.
PLoS One ; 15(5): e0232832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32401800

RESUMO

The treatment of human colorectal cancer (CRC) cells through suppressing the abnormal survival signaling pathways has recently become a significant area of focus. In this study, our results demonstrated that decyl caffeic acid (DC), one of the novel caffeic acid derivatives, remarkedly suppressed the growth of CRC cells both in vitro and in vivo. The inhibitory effects of DC on CRC cells were investigated in an in vitro cell model and in vivo using a xenograft mouse model. CRC cells were treated with DC at various dosages (0, 10, 20 and 40 µM), and cell survival, the apoptotic index and the autophagy level were measured using an MTT assay and flow cytometry analysis, respectively. The signaling cascades in CRC were examined by Western blot assay. The anti-cancer effects of DC on tumor growth were examined by using CRC HCT-116 cells implanted in an animal model. Our results indicated that DC differentially suppressed the growth of CRC HT-29 and HCT-116 cells through an enhancement of cell-cycle arrest at the S phase. DC inhibited the expression of cell-cycle regulators, which include cyclin E and cyclin A proteins. The molecular mechanisms of action were correlated to the blockade of the STAT3 and Akt signaling cascades. Strikingly, a high dosage of DC prompted a self-protection action through inducing cell-dependent autophagy in HCT-116 cells. Suppression of autophagy induced cell death in the treatment of DC in HCT-116 cells. DC seemed to inhibit cell proliferation of CRC differentially, and the therapeutic advantage appeared to be autophagy dependent. Moreover, consumption of DC blocked the tumor growth of colorectal adenocarcinoma in an experimental animal model. In conclusion, our results suggested that DC could act as a therapeutic agent through the significant suppression of tumor growth of human CRC cells.


Assuntos
Antineoplásicos/administração & dosagem , Ácidos Cafeicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Autofagia , Ácidos Cafeicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Ciclina A/metabolismo , Ciclina E/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
PLoS One ; 15(5): e0232930, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32401801

RESUMO

INTRODUCTION: Probiotics are suggested to prevent colorectal cancer (CRC). This study aimed to investigate the anticancer properties of some potential probiotics in vitro and in vivo. MATERIALS AND METHODS: Anticancer effects of potential probiotic groups were investigated following of in LS174T cancer cells compared to IEC-18 normal cells. 1. a single strain of Bifidobacterium. breve, 2. a single strain of Lactobacillus. reuteri, 3. a cocktail of 5 strains of Lactobacilli (LC), 4. a cocktail of 5 strains of Bifidobacteria (BC), 5. a cocktail of 10 strains from Lactobacillus and Bifidobacterium (L+B). Apoptosis rate, EGFR, HER-2 and PTGS-2 (COX-2 protein) expression levels were assessed as metrics of evaluating anticancer properties. Effect of BC, as the most effective group in vitro, was further assessed in mice models. RESULTS: BC induced ~21% and only ~3% apoptosis among LS174T and IEC-18 cells respectively. BC decreased the expression of EGFR by 4.4 folds, HER-2 by 6.7 folds, and PTGS-2 by 20 folds among the LS174T cells. In all these cases, BC did not interfere significantly with the expression of the genes in IEC-18 cells. This cocktail has caused only 1.1 folds decrease, 1.8 folds increase and 1.7 folds decrease in EGFR, HER-2 and PTGS-2 expression, respectively. Western blot analysis confirmed these results in the protein level. BC significantly ameliorated the disease activity index, restored colon length, inhibited the increase in incidence and progress of tumors to higher stages and grades. CONCLUSIONS: BC was the most efficient treatment in this study. It had considerable "protective" anti-cancer properties and concomitantly down regulated EGFR, HER-2 and PTGS-2 (COX-2), while having significant anti-CRC effects on CRC mice models. In general, this potential probiotic could be considered as a suitable nutritional supplement to treat and prevent CRC.


Assuntos
Bifidobacterium/fisiologia , Neoplasias Colorretais/dietoterapia , Ciclo-Oxigenase 2/genética , Probióticos/administração & dosagem , Receptor ErbB-2/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Probióticos/farmacologia , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA