Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
Am J Med Genet A ; 2022 Jan 12.
Article En | MEDLINE | ID: mdl-35019224

Osteogenesis imperfecta (OI) is a rare low-bone mass skeletal Mendelian disorder characterized by bone fragility leading to bone fractures, with deformities and stunted growth in the more severe phenotypes. Other common, nonskeletal findings include blue sclerae and dentinogenesis imperfecta. It is caused mainly by quantitative or structural defects in type I collagen, although dysregulation of different signaling pathways that play a role in bone morphogenesis has been described to be associated with a small fraction of individuals with OI. Recently, a homozygous variant in the translation start site of CCDC134, showing increased activation of the RAS/MAPK signaling pathway, has been reported in three families of Moroccan origin with a severe, deforming form of OI. We report on a 9-year-old Brazilian boy, harboring the same homozygous variant in CCDC134, also presenting severe bone involvement. This report contributes to the phenotypic delineation of this novel autosomal recessive form of OI, which presents with high prevalence of nonunion fractures considered rare events in OI in general. In addition, it expands the phenotype to include base skull anomalies, potentially leading to serious complications, as seen in severe forms of OI. A poor response to bisphosphonate therapy was observed in these individuals. As the variant in CCDC134 leads to dysregulation of the RAS/MAPK signaling pathway, drugs targeted to this pathway could be an alternative to achieve a better management of these individuals.

2.
Front Genet ; 12: 708348, 2021.
Article En | MEDLINE | ID: mdl-34512724

Chromoanagenesis is a descriptive term that encompasses classes of catastrophic mutagenic processes that generate localized and complex chromosome rearrangements in both somatic and germline genomes. Herein, we describe a 5-year-old female presenting with a constellation of clinical features consistent with a clinical diagnosis of Coffin-Siris syndrome 1 (CSS1). Initial G-banded karyotyping detected a 90-Mb pericentric and a 47-Mb paracentric inversion on a single chromosome. Subsequent analysis of short-read whole-genome sequencing data and genomic optical mapping revealed additional inversions, all clustered on chromosome 6, one of them disrupting ARID1B for which haploinsufficiency leads to the CSS1 disease trait (MIM:135900). The aggregate structural variant data show that the resolved, the resolved derivative chromosome architecture presents four de novo inversions, one pericentric and three paracentric, involving six breakpoint junctions in what appears to be a shuffling of genomic material on this chromosome. Each junction was resolved to nucleotide-level resolution with mutational signatures suggestive of non-homologous end joining. The disruption of the gene ARID1B is shown to occur between the fourth and fifth exon of the canonical transcript with subsequent qPCR studies confirming a decrease in ARID1B expression in the patient versus healthy controls. Deciphering the underlying genomic architecture of chromosomal rearrangements and complex structural variants may require multiple technologies and can be critical to elucidating the molecular etiology of a patient's clinical phenotype or resolving unsolved Mendelian disease cases.

3.
Arch Endocrinol Metab ; 64(5): 559-566, 2021 May 18.
Article En | MEDLINE | ID: mdl-34033296

Objective: Our aim is to establish genetic diagnosis of congenital generalized lipodystrophy (CGL) using targeted massively parallel sequencing (MPS), also known as next-generation sequencing (NGS). Methods: Nine unrelated individuals with a clinical diagnosis of CGL were recruited. We used a customized panel to capture genes related to genetic lipodystrophies. DNA libraries were generated, sequenced using the Illumina MiSeq, and bioinformatics analysis was performed. Results: An accurate genetic diagnosis was stated for all nine patients. Four had pathogenic variants in AGPAT2 and three in BSCL2. Three large homozygous deletions in AGPAT2 were identified by copy-number variant analysis. Conclusion: Although we have found allelic variants in only 2 genes related to CGL, the panel was able to identify different variants including deletions that would have been missed by Sanger sequencing. We believe that MPS is a valuable tool for the genetic diagnosis of multi-genes related diseases, including CGL.


GTP-Binding Protein gamma Subunits , Lipodystrophy, Congenital Generalized , Lipodystrophy , Alleles , GTP-Binding Protein gamma Subunits/genetics , High-Throughput Nucleotide Sequencing , Humans , Lipodystrophy/diagnosis , Lipodystrophy/genetics , Lipodystrophy, Congenital Generalized/diagnosis , Lipodystrophy, Congenital Generalized/genetics , Mutation/genetics
4.
J Med Genet ; 2021 Jan 12.
Article En | MEDLINE | ID: mdl-33436522

BACKGROUND: Pathogenic heterozygous SIX1 variants (predominantly missense) occur in branchio-otic syndrome (BOS), but an association with craniosynostosis has not been reported. METHODS: We investigated probands with craniosynostosis of unknown cause using whole exome/genome (n=628) or RNA (n=386) sequencing, and performed targeted resequencing of SIX1 in 615 additional patients. Expression of SIX1 protein in embryonic cranial sutures was examined in the Six1 nLacZ/+ reporter mouse. RESULTS: From 1629 unrelated cases with craniosynostosis we identified seven different SIX1 variants (three missense, including two de novo mutations, and four nonsense, one of which was also present in an affected twin). Compared with population data, enrichment of SIX1 loss-of-function variants was highly significant (p=0.00003). All individuals with craniosynostosis had sagittal suture fusion; additionally four had bilambdoid synostosis. Associated BOS features were often attenuated; some carrier relatives appeared non-penetrant. SIX1 is expressed in a layer basal to the calvaria, likely corresponding to the dura mater, and in the mid-sagittal mesenchyme. CONCLUSION: Craniosynostosis is associated with heterozygous SIX1 variants, with possible enrichment of loss-of-function variants compared with classical BOS. We recommend screening of SIX1 in craniosynostosis, particularly when sagittal±lambdoid synostosis and/or any BOS phenotypes are present. These findings highlight the role of SIX1 in cranial suture homeostasis.

5.
Am J Med Genet A ; 185(3): 774-780, 2021 03.
Article En | MEDLINE | ID: mdl-33382187

Noonan syndrome (NS) and NS related disorders (NRD) are frequent monogenic diseases. Pathogenic variants in PTPN11 are observed in approximately 50% of these NS patients. Several pleiotropic phenotypes have previously been described in this condition. This study aimed at characterizing glucose and lipid profiles in patients with NS/NRD. We assessed fasting blood glucose, insulin, cholesterol (total and fractions), and triglyceride (TG) levels in 112 prepubertal children and 73 adults. Additionally, an oral glucose tolerance test (OGTT) was performed in 40 children and 54 adults. Data were analyzed between age groups according to the presence (+) or absence (-) of PTPN11 mutation. Prepubertal patients with NS/NRD were also compared with a control group. Despite the lean phenotype of children with NS/NRD, they presented an increased frequency of low HDL-cholesterol (63% in PTPN11+, 59% in PTPN11- and 16% in control, p < .001) and high TG levels (29% in PTPN11+, 18% in PTPN11- and 2.3% in control). PTPN11+ patients had a higher median HOMA-IR (1.0, ranged from 0.3 to 3.2) in comparison with PTPN11- (0.6; 0.2 to 4.4) and controls (0.6; 0.4 to 1.4, p = .027). Impaired glucose tolerance was observed in 19% (10:54) of lean adults with NS/NRD assessed by OGTT. Moreover, women with PTPN11 mutations had lower HDL-cholesterol levels than those without. Our results suggest that children and young adult patients with NS/NRD have an unfavorable metabolic profile characterized by low HDL, a tendency of elevated TGs, and glucose metabolism impairment despite a lean phenotype.


Metabolome , Noonan Syndrome/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Adolescent , Adult , Aged , Cross-Sectional Studies , Female , Follow-Up Studies , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Mutation , Noonan Syndrome/genetics , Noonan Syndrome/metabolism , Phenotype , Prognosis , Young Adult
6.
Am J Hum Genet ; 108(1): 115-133, 2021 01 07.
Article En | MEDLINE | ID: mdl-33308444

Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.


Bone and Bones/metabolism , Calcium-Binding Proteins/metabolism , Developmental Disabilities/metabolism , Osteogenesis/physiology , Signal Transduction/physiology , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Line , Cell Line, Tumor , Female , Gene Expression Regulation, Developmental/physiology , HEK293 Cells , Hep G2 Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , MCF-7 Cells , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL
7.
Am J Med Genet C Semin Med Genet ; 184(4): 896-911, 2020 12.
Article En | MEDLINE | ID: mdl-33128510

We report the clinical and molecular data of a large cohort comprising 242 individuals with RASopathies, from a single Tertiary Center in Brazil, the largest study from Latin America. Noonan syndrome represented 76% of the subjects, with heterozygous variants in nine different genes, mainly PTPN11, SOS1, RAF1, LZTR1, and RIT1, detected by Sanger and next-generation sequencing. The latter was applied to 126 individuals, with a positive yield of 63% in genes of the RAS/MAPK cascade. We present evidence that there are some allelic differences in PTPN11 across distinct populations. We highlight the clinical aspects that pose more medical concerns, such as the cardiac anomalies, bleeding diathesis and proliferative lesions. The genotype-phenotype analysis between the RASopathies showed statistically significant differences in some cardinal features, such as craniofacial and cardiac anomalies, the latter also statistically significant for different genes in Noonan syndrome. We present two individuals with a Noonan syndrome phenotype, one with an atypical, structural cardiac defect, harboring variants in genes mainly associated with isolated hypertrophic cardiomyopathy and discuss the role of these variants in their phenotype.


Noonan Syndrome , Brazil , Genotype , Humans , Mutation , Noonan Syndrome/genetics , Phenotype
8.
Arch. endocrinol. metab. (Online) ; 64(5): 559-566, Sept.-Oct. 2020. tab, graf
Article En | LILACS-Express | LILACS | ID: biblio-1131124

ABSTRACT Objective: Our aim is to establish genetic diagnosis of congenital generalized lipodystrophy (CGL) using targeted massively parallel sequencing (MPS), also known as next-generation sequencing (NGS). Subjects and methods: Nine unrelated individuals with a clinical diagnosis of CGL were recruited. We used a customized panel to capture genes related to genetic lipodystrophies. DNA libraries were generated, sequenced using the Illumina MiSeq, and bioinformatics analysis was performed. Results: An accurate genetic diagnosis was stated for all nine patients. Four had pathogenic variants in AGPAT2 and three in BSCL2. Three large homozygous deletions in AGPAT2 were identified by copy-number variant analysis. Conclusions: Although we have found allelic variants in only 2 genes related to CGL, the panel was able to identify different variants including deletions that would have been missed by Sanger sequencing. We believe that MPS is a valuable tool for the genetic diagnosis of multi-genes related diseases, including CGL.

9.
Front Oncol ; 10: 556, 2020.
Article En | MEDLINE | ID: mdl-32432034

Hepatoblastoma is a very rare embryonal liver cancer supposed to arise from the impairment of hepatocyte differentiation during embryogenesis. In this study, we investigated by exome sequencing the burden of somatic mutations in a cohort of 10 hepatoblastomas, including a congenital case. Our data disclosed a low mutational background and pointed out to a novel set of candidate genes for hepatoblastoma biology, which were shown to impact gene expression levels. Only three recurrently mutated genes were detected: CTNNB1 and two novel candidates, CX3CL1 and CEP164. A relevant finding was the identification of a recurrent mutation (A235G) in two hepatoblastomas at the CX3CL1 gene; evaluation of RNA and protein expression revealed upregulation of CX3CL1 in tumors. The analysis was replicated in two independents cohorts, substantiating that an activation of the CX3CL1/CX3CR1 pathway occurs in hepatoblastomas. In inflammatory regions of hepatoblastomas, CX3CL1/CX3CR1 were not detected in the infiltrated lymphocytes, in which they should be expressed in normal conditions, whereas necrotic regions exhibited negative labeling in tumor cells, but strongly positive infiltrated lymphocytes. Altogether, these data suggested that CX3CL1/CX3CR1 upregulation may be a common feature of hepatoblastomas, potentially related to chemotherapy response and progression. In addition, three mutational signatures were identified in hepatoblastomas, two of them with predominance of either the COSMIC signatures 1 and 6, found in all cancer types, or the COSMIC signature 29, mostly related to tobacco chewing habit; a third novel mutational signature presented an unspecific pattern with an increase of C>A mutations. Overall, we present here novel candidate genes for hepatoblastoma, with evidence that CX3CL1/CX3CR1 chemokine signaling pathway is likely involved with progression, besides reporting specific mutational signatures.

10.
Horm Res Paediatr ; 92(2): 115-123, 2019.
Article En | MEDLINE | ID: mdl-31715605

BACKGROUND: Floating-Harbor syndrome (FHS) is a rare condition characterized by dysmorphic facial features, short stature, and expressive language delay. OBJECTIVE: The aim of this study was to describe a cohort of patients with FHS and review the literature about the response to recombinant human growth hormone (rhGH) therapy. METHODS: Anthropometric and laboratory data from 7 patients with FHS were described. The molecular diagnosis was established by multigene analysis. Moreover, we reviewed the literature concerning patients with FHS treated with rhGH. RESULTS: All 7 patients were born small for gestational age. At first evaluation, 6 patients had a height standard deviation score (SDS) ≤-2 and 1 had short stature in relation to their target height. Bone age was usually delayed, which rapidly advanced during puberty. Nonspecific skeletal abnormalities were frequently noticed, and normal to elevated plasma IGF-I levels were observed in all except 1 patient with growth hormone deficiency. Information about 20 patients with FHS treated with rhGH was analyzed (4 from our cohort and 16 from the literature). The median height changes during the treatment period (approx. 2.9 years) were 1.1 SDS (range from -0.4 to 3.1). Nontreated patients had an adult height SDS of -4.1 ± 1.2 (n = 10) versus -2.6 ± 0.8 SDS (n = 7, p 0.012) for treated patients. CONCLUSION: We observed a laboratory profile compatible with IGF-1 insensitivity in some patients with FHS. Nevertheless, our study suggests that children with FHS may be considered as candidates for rhGH therapy. Further studies are necessary to establish the real benefit and safety of rhGH therapy in these patients.


Abnormalities, Multiple , Adolescent Development/drug effects , Child Development/drug effects , Craniofacial Abnormalities , Dwarfism, Pituitary , Growth Disorders , Heart Septal Defects, Ventricular , Human Growth Hormone/therapeutic use , Puberty/drug effects , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Abnormalities, Multiple/physiopathology , Adolescent , Body Height/drug effects , Child , Child, Preschool , Craniofacial Abnormalities/drug therapy , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Craniofacial Abnormalities/physiopathology , Dwarfism, Pituitary/drug therapy , Dwarfism, Pituitary/metabolism , Dwarfism, Pituitary/pathology , Dwarfism, Pituitary/physiopathology , Female , Growth Disorders/drug therapy , Growth Disorders/metabolism , Growth Disorders/pathology , Growth Disorders/physiopathology , Heart Septal Defects, Ventricular/drug therapy , Heart Septal Defects, Ventricular/metabolism , Heart Septal Defects, Ventricular/pathology , Heart Septal Defects, Ventricular/physiopathology , Humans , Insulin-Like Growth Factor I/metabolism , Male
11.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Article En | MEDLINE | ID: mdl-31564437

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Molecular Chaperones/genetics , Mutation , Osteogenesis Imperfecta/genetics , Animals , Female , Genes, Recessive , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Male , Mice , Pedigree , Phenotype , Wnt Signaling Pathway
12.
J Hum Genet ; 64(10): 967-978, 2019 Oct.
Article En | MEDLINE | ID: mdl-31337854

Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder with specific dysmorphic features. Pathogenic genetic variants encoding cohesion complex subunits and interacting proteins (e.g., NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major causes of CdLS. However, there are many clinically diagnosed cases of CdLS without pathogenic variants in these genes. To identify further genetic causes of CdLS, we performed whole-exome sequencing in 57 CdLS families, systematically evaluating both single nucleotides variants (SNVs) and copy number variations (CNVs). We identified pathogenic genetic changes in 36 out of 57 (63.2 %) families, including 32 SNVs and four CNVs. Two known CdLS genes, NIPBL and SMC1A, were mutated in 23 and two cases, respectively. Among the remaining 32 individuals, four genes (ANKRD11, EP300, KMT2A, and SETD5) each harbored a pathogenic variant in a single individual. These variants are known to be involved in CdLS-like. Furthermore, pathogenic CNVs were detected in NIPBL, MED13L, and EHMT1, along with pathogenic SNVs in ZMYND11, MED13L, and PHIP. These three latter genes were involved in diseases other than CdLS and CdLS-like. Systematic clinical evaluation of all patients using a recently proposed clinical scoring system showed that ZMYND11, MED13L, and PHIP abnormality may cause CdLS or CdLS-like.


Cell Cycle Proteins/genetics , Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , De Lange Syndrome/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mediator Complex/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Copy Number Variations , De Lange Syndrome/pathology , E1A-Associated p300 Protein/genetics , Family , Female , Genetic Association Studies , Histone-Lysine N-Methyltransferase/genetics , Humans , Male , Methyltransferases/genetics , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Polymorphism, Single Nucleotide , Repressor Proteins/genetics , Whole Exome Sequencing
13.
Horm Res Paediatr ; 91(4): 252-261, 2019.
Article En | MEDLINE | ID: mdl-31132774

OBJECTIVES: The aim of this study was to evaluate the response to recombinant human growth hormone (rhGH) treatment in patients with Noonan syndrome (NS). MATERIALS AND METHODS: Forty-two patients (35 PTPN11+) were treated with rhGH, and 17 were followed-up until adult height. The outcomes were changes in growth velocity (GV) and height standard deviation scores (SDS) for normal (height-CDC SDS) and Noonan standards (height-NS SDS). RESULTS: The pretreatment chronological age was 10.3 ± 3.5 years. Height-CDC SDS and height-NS SDS were -3.1 ± 0.7 and -0.5 ± 0.6, respectively. PTPN11+ patients had a better growth response than PTPN11- patients. GV SDS increased from -1.2 ± 1.8 to 3.1 ± 2.8 after the first year of therapy in PTPN11+ patients, and from -1.9 ± 2.6 to -0.1 ± 2.6 in PTPN11- patients. The gain in height-CDC SDS during the first year was higher in PTPN11+ than PTPN11- (0.6 ± 0.4 vs. 0.1 ± 0.2, p = 0.008). Similarly, the gain was observed in height-NS SDS (0.6 ± 0.3 vs. 0.2 ± 0.2, respectively, p < 0.001). Among the patients that reached adult height (n = 17), AH-CDC SDS and AH-NS SDS were -2.1 ± 0.7 and 0.7 ± 0.8, respectively. The total increase in height SDS was 1.3 ± 0.7 and 1.5 ± 0.6 for normal and NS standards, respectively. CONCLUSIONS: This study supports the advantage of rhGH therapy on adult height in PTPN11+ patients. In comparison, PTPN11- patients showed a poor response to rhGH. However, this PTPN11- group was small, preventing an adequate comparison among different genotypes and no guarantee of response to therapy in genes besides PTPN11.


Body Height/drug effects , Human Growth Hormone/administration & dosage , Mutation , Noonan Syndrome , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Adult , Body Height/genetics , Female , Humans , Longitudinal Studies , Male , Noonan Syndrome/drug therapy , Noonan Syndrome/genetics , Noonan Syndrome/physiopathology , Retrospective Studies
14.
Mol Syndromol ; 10(1-2): 40-47, 2019 Feb.
Article En | MEDLINE | ID: mdl-30976278

Craniofrontonasal syndrome (CFNS) is an X-linked disorder caused by EFNB1 mutations in which females are more severely affected than males. Severe male phenotypes are associated with mosaicism, supporting cellular interference for sex bias in this disease. Although many variants have been found in the coding region of EFNB1, only 2 pathogenic variants have been identified in the same nucleotide in 5'UTR, disrupting the stop codon of an upstream open reading frame (uORF). uORFs are known to be part of a wide range of post-transcriptional regulation processes, and just recently, their association with human diseases has come to light. In the present study, we analyzed EFNB1 in a female patient with typical features of CFNS. We identified a variant, located at c.-411, creating a new upstream ATG (uATG) in the 5'UTR of EFNB1, which is predicted to alter an existing uORF. Dual-luciferase reporter assays showed significant reduction in protein translation, but no difference in the mRNA levels. Our study demonstrates, for the first time, the regulatory impact of uATG formation on EFNB1 levels and suggests that this should be the target region in molecular diagnosis of CFNS cases without pathogenic variants in the coding and splice sites regions of EFNB1.

15.
Bone ; 121: 163-171, 2019 04.
Article En | MEDLINE | ID: mdl-30599297

Heterozygous pathogenic variants in the FN1 gene, encoding fibronectin (FN), have recently been shown to be associated with a skeletal disorder in some individuals affected by spondylometaphyseal dysplasia with "corner fractures" (SMD-CF). The most striking feature characterizing SMD-CF is irregularly shaped metaphyses giving the appearance of "corner fractures". An array of secondary features, including developmental coxa vara, ovoid vertebral bodies and severe scoliosis, may also be present. FN is an important extracellular matrix component for bone and cartilage development. Here we report five patients affected by this subtype of SMD-CF caused by five novel FN1 missense mutations: p.Cys123Tyr, p.Cys169Tyr, p.Cys213Tyr, p.Cys231Trp and p.Cys258Tyr. All individuals shared a substitution of a cysteine residue, disrupting disulfide bonds in the FN type-I assembly domains located in the N-terminal assembly region. The abnormal metaphyseal ossification and "corner fracture" appearances were the most remarkable clinical feature in these patients. In addition, generalized skeletal fragility with low-trauma bilateral femoral fractures was identified in one patient. Interestingly, the distal femoral changes in this patient healed with skeletal maturation. Our report expands the phenotypic and genetic spectrum of the FN1-related SMD-CF and emphasizes the importance of FN in bone formation and possibly also in the maintenance of bone strength.


Fibronectins/genetics , Osteochondrodysplasias/genetics , Adolescent , Adult , Bone Density/genetics , Bone Diseases, Developmental/genetics , Child , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation/genetics , Phenotype , Polymerase Chain Reaction , Young Adult
16.
Appl Clin Genet ; 11: 93-98, 2018.
Article En | MEDLINE | ID: mdl-30174453

Introduction: Exome sequencing is recognized as a powerful tool for identifying the genetic cause of intellectual disability (ID). It is uncertain, however, whether only the exome of the proband should be sequenced or if the sequencing of parental genomes is also required, and the resulting increase in diagnostic yield justifies the increase in costs. Patients and methods: We sequenced the exomes of eight individuals with sporadic syndromic ID and their parents. Results and discussion: Likely pathogenic variants were detected in eight candidate genes, namely homozygous or compound heterozygous variants in three autosomal genes (ADAMTSL2, NALCN, VPS13B), one in an X-linked gene (MID1), and de novo heterozygous variants in four autosomal genes (RYR2, GABBR2, CDK13, DDX3X). Two patients harbored rare variants in two or more candidate genes, while in three other patients no candidate was identified. In five probands (62%), the detected variants explained their clinical findings. The causative recessive variants would have led to diagnosis even without parental exome sequencing, but for the heterozygous dominant ones, the exome trio-based approach was fundamental in the identification of the de novo likely pathogenic variants.

17.
Genet. mol. biol ; 41(1): 85-91, Jan.-Mar. 2018. tab, graf
Article En | LILACS-Express | LILACS | ID: biblio-892471

Abstract CHIME syndrome is an extremely rare autosomal recessive multisystemic disorder caused by mutations in PIGL. PIGL is an endoplasmic reticulum localized enzyme that catalyzes the second step of glycosylphosphatidylinositol (GPI) biosynthesis, which plays a role in the anchorage of cell-surface proteins including receptors, enzymes, and adhesion molecules. Germline mutations in other members of GPI and Post GPI Attachment to Proteins (PGAP) family genes have been described and constitute a group of diseases within the congenital disorders of glycosylation. Patients in this group often present alkaline phosphatase serum levels abnormalities and neurological symptoms. We report a CHIME syndrome patient who harbors a missense mutation c.500T > C (p.Leu167Pro) and a large deletion involving the 5' untranslated region and part of exon 1 of PIGL. In CHIME syndrome, a recurrent missense mutation c.500T > C (p.Leu167Pro) is found in the majority of patients, associated with a null mutation in the other allele, including an overrepresentation of large deletions. The latter are not detected by the standard analysis in sequencing techniques, including next-generation sequencing. Thus, in individuals with a clinical diagnosis of CHIME syndrome in which only one mutation is found, an active search for a large deletion should be sought.

18.
Genet Mol Biol ; 41(1): 85-91, 2018.
Article En | MEDLINE | ID: mdl-29473937

CHIME syndrome is an extremely rare autosomal recessive multisystemic disorder caused by mutations in PIGL. PIGL is an endoplasmic reticulum localized enzyme that catalyzes the second step of glycosylphosphatidylinositol (GPI) biosynthesis, which plays a role in the anchorage of cell-surface proteins including receptors, enzymes, and adhesion molecules. Germline mutations in other members of GPI and Post GPI Attachment to Proteins (PGAP) family genes have been described and constitute a group of diseases within the congenital disorders of glycosylation. Patients in this group often present alkaline phosphatase serum levels abnormalities and neurological symptoms. We report a CHIME syndrome patient who harbors a missense mutation c.500T > C (p.Leu167Pro) and a large deletion involving the 5' untranslated region and part of exon 1 of PIGL. In CHIME syndrome, a recurrent missense mutation c.500T > C (p.Leu167Pro) is found in the majority of patients, associated with a null mutation in the other allele, including an overrepresentation of large deletions. The latter are not detected by the standard analysis in sequencing techniques, including next-generation sequencing. Thus, in individuals with a clinical diagnosis of CHIME syndrome in which only one mutation is found, an active search for a large deletion should be sought.

19.
Am J Hum Genet ; 102(1): 69-87, 2018 01 04.
Article En | MEDLINE | ID: mdl-29290338

Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.


Codon/genetics , Genetic Association Studies , Mutation, Missense/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Amino Acid Sequence , Child , Cohort Studies , Computer Simulation , Demography , Female , Heterozygote , Humans , Male , Neurofibromin 1/chemistry , Phenotype , Young Adult
20.
Hum Genome Var ; 5: 18010, 2018.
Article En | MEDLINE | ID: mdl-31428438

KIF11 mutations are known to cause autosomal dominant microcephaly-lymphedema-chorioretinopathy dysplasia syndrome, associated or not with intellectual disability. We report a father and two children presenting microcephaly, chorioretinopathy and mild intellectual disability associated with a 209-kb microdeletion at 10q23.33. This microdeletion encompasses the entire KIF11 gene. In addition to point mutations, KIF11 haploinsufficiency due to a deletion is causally associated with autosomal dominant microcephaly, chorioretinopathy and mild intellectual disability.

...