Your browser doesn't support javascript.
: 20 | 50 | 100
1 - 20 de 131
Front Oncol ; 12: 860767, 2022.
Article En | MEDLINE | ID: mdl-35547873

The immune contexture of pancreatic ductal adenocarcinoma (PDAC) is generally immunosuppressive. A role for immune checkpoint inhibitors (ICIs) in PDAC has only been demonstrated for the rare and hypermutated mismatch repair (MMR) deficient (MMR-d) subtype. Homologous recombination repair (HR) deficient (HR-d) PDAC is more prevalent and may encompass up to 20% of PDAC. Its genomic instability may promote a T-cell mediated anti-tumor response with therapeutic sensitivity to ICIs. To investigate the immunogenicity of HR-d PDAC, we used multiplex immunohistochemistry (IHC) to compare the density and spatial distribution of CD8+ cytotoxic T-cells, FOXP3+ regulatory T-cells (Tregs), and CD68+ tumor-associated macrophages (TAMs) in HR-d versus HR/MMR-intact PDAC. We also evaluated the IHC positivity of programmed death-ligand 1 (PD-L1) across the subgroups. 192 tumors were evaluated and classified as HR/MMR-intact (n=166), HR-d (n=25) or MMR-d (n=1) based on germline testing and tumor molecular hallmarks. Intra-tumoral CD8+ T-cell infiltration was higher in HR-d versus HR/MMR-intact PDAC (p<0.0001), while CD8+ T-cell densities in the peri-tumoral and stromal regions were similar in both groups. HR-d PDAC also displayed increased intra-tumoral FOXP3+ Tregs (p=0.049) and had a higher CD8+:FOXP3+ ratio (p=0.023). CD68+ TAM expression was similar in HR-d and HR/MMR-intact PDAC. Finally, 6 of the 25 HR-d cases showed a PD-L1 Combined Positive Score of >=1, whereas none of the HR/MMR-intact cases met this threshold (p<0.00001). These results provide immunohistochemical evidence for intra-tumoral CD8+ T-cell enrichment and PD-L1 positivity in HR-d PDAC, suggesting that HR-d PDAC may be amenable to ICI treatment strategies.

Neuro Oncol ; 2022 Apr 13.
Article En | MEDLINE | ID: mdl-35416251

BACKGROUND: Glioblastoma is a treatment-resistant brain cancer. Its hierarchical cellular nature and its tumour microenvironment (TME) before, during, and after treatments remain unresolved. METHODS: Here, we used single-cell RNA-sequencing to analyze new and recurrent glioblastoma, and the nearby subventricular zone (SVZ). RESULTS: We found four glioblastoma neural lineages are present in new and recurrent glioblastoma with an enrichment of the cancer mesenchymal lineage, immune cells, and reactive astrocytes in early recurrences. Cancer lineages were hierarchically organized around cycling oligodendrocytic and astrocytic progenitors that are transcriptomically similar but distinct to SVZ neural stem cells (NSCs). Furthermore, NSCs from the SVZ of glioblastoma patients harbored glioblastoma chromosomal anomalies. Lastly, mesenchymal cancer cells and TME reactive astrocytes shared similar gene signatures which were induced by radiotherapy in a myeloid-dependent fashion in vivo. CONCLUSION: These data reveal the dynamic, immune-dependent nature of glioblastoma's response to treatments and identify distant NSCs as likely cells of origin.

Elife ; 112022 02 21.
Article En | MEDLINE | ID: mdl-35188098

Myofibers are the main components of skeletal muscle, which is the largest tissue in the body. Myofibers are highly adaptive and can be altered under different biological and disease conditions. Therefore, transcriptional and epigenetic studies on myofibers are crucial to discover how chromatin alterations occur in the skeletal muscle under different conditions. However, due to the heterogenous nature of skeletal muscle, studying myofibers in isolation proves to be a challenging task. Single-cell sequencing has permitted the study of the epigenome of isolated myonuclei. While this provides sequencing with high dimensionality, the sequencing depth is lacking, which makes comparisons between different biological conditions difficult. Here, we report the first implementation of single myofiber ATAC-Seq, which allows for the sequencing of an individual myofiber at a depth sufficient for peak calling and for comparative analysis of chromatin accessibility under various physiological and disease conditions. Application of this technique revealed significant differences in chromatin accessibility between resting and regenerating myofibers, as well as between myofibers from a mouse model of Duchenne Muscular Dystrophy (mdx) and wild-type (WT) counterparts. This technique can lead to a wide application in the identification of chromatin regulatory elements and epigenetic mechanisms in muscle fibers during development and in muscle-wasting diseases.

Chromatin , Muscular Dystrophy, Duchenne , Animals , Chromatin/genetics , Chromatin Immunoprecipitation Sequencing , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal , Muscle, Skeletal
Genome Biol ; 23(1): 13, 2022 01 07.
Article En | MEDLINE | ID: mdl-34996498

BACKGROUND: Genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) are known to preferentially co-locate to active regulatory elements in tissues and cell types relevant to disease aetiology. Further characterisation of associated cell type-specific regulation can broaden our understanding of how GWAS signals may contribute to disease risk. RESULTS: To gain insight into potential functional mechanisms underlying GWAS associations, we developed FORGE2 ( ), which is an updated version of the FORGE web tool. FORGE2 uses an expanded atlas of cell type-specific regulatory element annotations, including DNase I hotspots, five histone mark categories and 15 hidden Markov model (HMM) chromatin states, to identify tissue- and cell type-specific signals. An analysis of 3,604 GWAS from the NHGRI-EBI GWAS catalogue yielded at least one significant disease/trait-tissue association for 2,057 GWAS, including > 400 associations specific to epigenomic marks in immune tissues and cell types, > 30 associations specific to heart tissue, and > 60 associations specific to brain tissue, highlighting the key potential of tissue- and cell type-specific regulatory elements. Importantly, we demonstrate that FORGE2 analysis can separate previously observed accessible chromatin enrichments into different chromatin states, such as enhancers or active transcription start sites, providing a greater understanding of underlying regulatory mechanisms. Interestingly, tissue-specific enrichments for repressive chromatin states and histone marks were also detected, suggesting a role for tissue-specific repressed regions in GWAS-mediated disease aetiology. CONCLUSION: In summary, we demonstrate that FORGE2 has the potential to uncover previously unreported disease-tissue associations and identify new candidate mechanisms. FORGE2 is a transparent, user-friendly web tool for the integrative analysis of loci discovered from GWAS.

Genome-Wide Association Study , Polymorphism, Single Nucleotide , Epigenomics , Genetic Predisposition to Disease , Humans , Phenotype , Regulatory Sequences, Nucleic Acid
Cell Rep ; 37(5): 109909, 2021 11 02.
Article En | MEDLINE | ID: mdl-34731633

Human induced pluripotent stem cells (hiPSCs) show variable differentiation potential due to their epigenomic heterogeneity, whose extent/attributes remain unclear, except for well-studied elements/chromosomes such as imprints and the X chromosomes. Here, we show that seven hiPSC lines with variable germline potential exhibit substantial epigenomic heterogeneity, despite their uniform transcriptomes. Nearly a quarter of autosomal regions bear potentially differential chromatin modifications, with promoters/CpG islands for H3K27me3/H2AK119ub1 and evolutionarily young retrotransposons for H3K4me3. We identify 145 large autosomal blocks (≥100 kb) with differential H3K9me3 enrichment, many of which are lamina-associated domains (LADs) in somatic but not in embryonic stem cells. A majority of these epigenomic heterogeneities are independent of genetic variations. We identify an X chromosome state with chromosome-wide H3K9me3 that stably prevents X chromosome erosion. Importantly, the germline potential of female hiPSCs correlates with X chromosome inactivation. We propose that inherent genomic properties, including CpG density, transposons, and LADs, engender epigenomic heterogeneity in hiPSCs.

Chromosomes, Human, X , Epigenesis, Genetic , Epigenome , Genetic Heterogeneity , Histones/metabolism , Induced Pluripotent Stem Cells/metabolism , X Chromosome Inactivation , Cell Differentiation , Cell Line , Chromatin Assembly and Disassembly , CpG Islands , DNA Transposable Elements , Epigenomics , Evolution, Molecular , Humans , Methylation , Nuclear Lamina/genetics , Nuclear Lamina/metabolism , Protein Processing, Post-Translational , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
Genome Med ; 13(1): 169, 2021 10 28.
Article En | MEDLINE | ID: mdl-34706766

BACKGROUND: Québec was the Canadian province most impacted by COVID-19, with 401,462 cases as of September 24th, 2021, and 11,347 deaths due mostly to a very severe first pandemic wave. In April 2020, we assembled the Coronavirus Sequencing in Québec (CoVSeQ) consortium to sequence SARS-CoV-2 genomes in Québec to track viral introduction events and transmission within the province. METHODS: Using genomic epidemiology, we investigated the arrival of SARS-CoV-2 to Québec. We report 2921 high-quality SARS-CoV-2 genomes in the context of > 12,000 publicly available genomes sampled globally over the first pandemic wave (up to June 1st, 2020). By combining phylogenetic and phylodynamic analyses with epidemiological data, we quantify the number of introduction events into Québec, identify their origins, and characterize the spatiotemporal spread of the virus. RESULTS: Conservatively, we estimated approximately 600 independent introduction events, the majority of which happened from spring break until 2 weeks after the Canadian border closed for non-essential travel. Subsequent mass repatriations did not generate large transmission lineages (> 50 sequenced cases), likely due to mandatory quarantine measures in place at the time. Consistent with common spring break and "snowbird" destinations, most of the introductions were inferred to have originated from Europe via the Americas. Once introduced into Québec, viral lineage sizes were overdispersed, with a few lineages giving rise to most infections. Consistent with founder effects, the earliest lineages to arrive tended to spread most successfully. Fewer than 100 viral introductions arrived during spring break, of which 7-12 led to the largest transmission lineages of the first wave (accounting for 52-75% of all sequenced infections). These successful transmission lineages dispersed widely across the province. Transmission lineage size was greatly reduced after March 11th, when a quarantine order for returning travellers was enacted. While this suggests the effectiveness of early public health measures, the biggest transmission lineages had already been ignited prior to this order. CONCLUSIONS: Combined, our results reinforce how, in the absence of tight travel restrictions or quarantine measures, fewer than 100 viral introductions in a week can ensure the establishment of extended transmission chains.

COVID-19/transmission , COVID-19/epidemiology , COVID-19/virology , Canada/epidemiology , Europe/epidemiology , Genome, Viral , Humans , Molecular Epidemiology , Pandemics , Phylogeny , Public Health , Quebec/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Travel
Methods Mol Biol ; 2381: 285-303, 2021.
Article En | MEDLINE | ID: mdl-34590283

Cancer can develop from an accumulation of alterations, some of which cause a nonmalignant cell to transform to a malignant state exhibiting increased rate of cell growth and evasion of growth suppressive mechanisms, eventually leading to tissue invasion and metastatic disease. Triple-negative breast cancers (TNBC) are heterogeneous and are clinically characterized by the lack of expression of hormone receptors and human epidermal growth factor receptor 2 (HER2), which limits its treatment options. Since tumor evolution is driven by diverse cancer cell populations and their microenvironment, it is imperative to map TNBC at single-cell resolution. Here, we describe an experimental procedure for isolating a single-cell suspension from a TNBC patient-derived xenograft, subjecting it to single-cell RNA sequencing using droplet-based technology from 10× Genomics and analyzing the transcriptomic data at single-cell resolution to obtain inferred copy number aberration profiles, using scCNA. Data obtained using this single-cell RNA sequencing experimental and analytical methodology should enhance our understanding of intratumor heterogeneity which is key for identifying genetic vulnerabilities and developing effective therapies.

DNA Copy Number Variations , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Disease Models, Animal , Genomics , Heterografts , Humans , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment
Front Cell Neurosci ; 15: 703951, 2021.
Article En | MEDLINE | ID: mdl-34335193

Ependymal cells are ciliated-epithelial glial cells that develop from radial glia along the surface of the ventricles of the brain and the spinal canal. They play a critical role in cerebrospinal fluid (CSF) homeostasis, brain metabolism, and the clearance of waste from the brain. These cells have been implicated in disease across the lifespan including developmental disorders, cancer, and neurodegenerative disease. Despite this, ependymal cells remain largely understudied. Using single-cell RNA sequencing data extracted from publicly available datasets, we make key findings regarding the remarkable conservation of ependymal cell gene signatures across age, region, and species. Through this unbiased analysis, we have discovered that one of the most overrepresented ependymal cell functions that we observed relates to a critically understudied role in metal ion homeostasis. Our analysis also revealed distinct subtypes and states of ependymal cells across regions and ages of the nervous system. For example, neonatal ependymal cells maintained a gene signature consistent with developmental processes such as determination of left/right symmetry; while adult ventricular ependymal cells, not spinal canal ependymal cells, appeared to express genes involved in regulating cellular transport and inflammation. Together, these findings highlight underappreciated functions of ependymal cells, which will be important to investigate in order to better understand these cells in health and disease.

Front Plant Sci ; 12: 667013, 2021.
Article En | MEDLINE | ID: mdl-34194450

The present work represents a pioneering effort, being the first to analyze genomic and transcriptomic data from Vigna unguiculata (cowpea) kinases. We evaluated the cowpea kinome considering its genome-wide distribution and structural characteristics (at the gene and protein levels), sequence evolution, conservation among Viridiplantae species, and gene expression in three cowpea genotypes under different stress situations, including biotic (injury followed by virus inoculation-CABMV or CPSMV) and abiotic (root dehydration). The structural features of cowpea kinases (VuPKs) indicated that 1,293 bona fide VuPKs covered 20 groups and 118 different families. The RLK-Pelle was the largest group, with 908 members. Insights on the mechanisms of VuPK genomic expansion and conservation among Viridiplantae species indicated dispersed and tandem duplications as major forces for VuPKs' distribution pattern and high orthology indexes and synteny with other legume species, respectively. K a /K s ratios showed that almost all (91%) of the tandem duplication events were under purifying selection. Candidate cis-regulatory elements were associated with different transcription factors (TFs) in the promoter regions of the RLK-Pelle group. C2H2 TFs were closely associated with the promoter regions of almost all scrutinized families for the mentioned group. At the transcriptional level, it was suggested that VuPK up-regulation was stress, genotype, or tissue dependent (or a combination of them). The most prominent families in responding (up-regulation) to all the analyzed stresses were RLK-Pelle_DLSV and CAMK_CAMKL-CHK1. Concerning root dehydration, it was suggested that the up-regulated VuPKs are associated with ABA hormone signaling, auxin hormone transport, and potassium ion metabolism. Additionally, up-regulated VuPKs under root dehydration potentially assist in a critical physiological strategy of the studied cowpea genotype in this assay, with activation of defense mechanisms against biotic stress while responding to root dehydration. This study provides the foundation for further studies on the evolution and molecular function of VuPKs.

Sci Rep ; 11(1): 13766, 2021 07 02.
Article En | MEDLINE | ID: mdl-34215813

Sexual dimorphism in gene regulation, including DNA methylation, is the main driver of sexual dimorphism in phenotypes. However, the questions of how and when sex shapes DNA methylation remain unresolved. Recently, using mice with different combinations of genetic and phenotypic sex, we identified sex-associated differentially methylated regions (sDMRs) that depended on the sex phenotype. Focusing on a panel of validated sex-phenotype dependent male- and female-biased sDMRs, we tested the developmental dynamics of sex bias in liver methylation and the impacts of mutations in the androgen receptor, estrogen receptor alpha, or the transcriptional repressor Bcl6 gene. True hermaphrodites that carry both unilateral ovaries and contralateral testes were also tested. Our data show that sex bias in methylation either coincides with or follows sex bias in the expression of sDMR-proximal genes, suggesting that sex bias in gene expression may be required for demethylation at certain sDMRs. Global ablation of AR, ESR1, or a liver-specific loss of BCL6, all alter sDMR methylation, whereas presence of both an ovary and a testis delays the establishment of male-type methylation levels in hermaphrodites. Moreover, the Bcl6-LKO shows dissociation between expression and methylation, suggesting a distinct role of BCL6 in demethylation of intragenic sDMRs.

DNA Methylation/genetics , Estrogen Receptor alpha/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Receptors, Androgen/genetics , Animals , Disorders of Sex Development/genetics , Epigenesis, Genetic , Female , Gene Expression Regulation/genetics , Gene Expression Regulation, Developmental/genetics , Liver/growth & development , Liver/metabolism , Male , Mice , Ovary/growth & development , Ovary/metabolism , Sex Characteristics , Sexism , Testis/growth & development , Testis/metabolism
Cell Rep ; 36(3): 109418, 2021 07 20.
Article En | MEDLINE | ID: mdl-34289352

The paternal environment has been linked to infertility and negative outcomes. Such effects may be transmitted via sperm through histone modifications. To date, in-depth profiling of the sperm chromatin in men has been limited. Here, we use deep sequencing to characterize the sperm profiles of histone H3 lysine 4 tri-methylation (H3K4me3) and DNA methylation in a representative reference population of 37 men. Our analysis reveals that H3K4me3 is localized throughout the genome and at genes for fertility and development. Remarkably, enrichment is also found at regions that escape epigenetic reprogramming in primordial germ cells, embryonic enhancers, and short-interspersed nuclear elements (SINEs). There is significant overlap in H3K4me3 and DNA methylation throughout the genome, suggesting a potential interplay between these marks previously reported to be mutually exclusive in sperm. Comparisons made between H3K4me3 marked regions in sperm and the embryonic transcriptome suggest an influence of paternal chromatin on embryonic gene expression.

DNA Methylation/genetics , Embryonic Development/genetics , Fertility/genetics , Histones/genetics , Spermatozoa/metabolism , Whole Genome Sequencing , Cellular Reprogramming/genetics , CpG Islands/genetics , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Genome, Human , Human Embryonic Stem Cells/metabolism , Humans , Male , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Short Interspersed Nucleotide Elements/genetics , Spermatogenesis/genetics
J Clin Invest ; 131(14)2021 07 15.
Article En | MEDLINE | ID: mdl-34043590

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks. We tested whether rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only 1 rare pLOF mutation across these genes among 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We found no evidence of association of rare LOF variants in the 13 candidate genes with severe COVID-19 outcomes.

COVID-19/genetics , COVID-19/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Loss of Function Mutation , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Severity of Illness Index , Toll-Like Receptor 3/genetics , Whole Exome Sequencing , Whole Genome Sequencing , Young Adult
Nat Commun ; 12(1): 2627, 2021 05 11.
Article En | MEDLINE | ID: mdl-33976190

The kidney and upper urinary tract develop through reciprocal interactions between the ureteric bud and the surrounding mesenchyme. Ureteric bud branching forms the arborized collecting duct system of the kidney, while ureteric tips promote nephron formation from dedicated progenitor cells. While nephron progenitor cells are relatively well characterized, the origin of ureteric bud progenitors has received little attention so far. It is well established that the ureteric bud is induced from the nephric duct, an epithelial duct derived from the intermediate mesoderm of the embryo. However, the cell state transitions underlying the progression from intermediate mesoderm to nephric duct and ureteric bud remain unknown. Here we show that nephric duct morphogenesis results from the coordinated organization of four major progenitor cell populations. Using single cell RNA-seq and Cluster RNA-seq, we show that these progenitors emerge in time and space according to a stereotypical pattern. We identify the transcription factors Tfap2a/b and Gata3 as critical coordinators of this progenitor cell progression. This study provides a better understanding of the cellular origin of the renal collecting duct system and associated urinary tract developmental diseases, which may inform guided differentiation of functional kidney tissue.

Nephrons/embryology , Organogenesis/genetics , Stem Cells/physiology , Animals , Cell Differentiation/genetics , Embryo, Mammalian , Female , GATA3 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Male , Mice , Mice, Transgenic , Models, Animal , RNA-Seq , Single-Cell Analysis , Transcription Factor AP-2/metabolism
Genome Res ; 31(4): 713-720, 2021 04.
Article En | MEDLINE | ID: mdl-33731361

Computational time and cost remain a major bottleneck for RNA-seq data analysis of nonmodel organisms without reference genomes. To address this challenge, we have developed Seq2Fun, a novel, all-in-one, ultrafast tool to directly perform functional quantification of RNA-seq reads without transcriptome de novo assembly. The pipeline starts with raw read quality control: sequencing error correction, removing poly(A) tails, and joining overlapped paired-end reads. It then conducts a DNA-to-protein search by translating each read into all possible amino acid fragments and subsequently identifies possible homologous sequences in a well-curated protein database. Finally, the pipeline generates several informative outputs including gene abundance tables, pathway and species hit tables, an HTML report to visualize the results, and an output of clean reads annotated with mapped genes ready for downstream analysis. Seq2Fun does not have any intermediate steps of file writing and loading, making I/O very efficient. Seq2Fun is written in C++ and can run on a personal computer with a limited number of CPUs and memory. It can process >2,000,000 reads/min and is >120 times faster than conventional workflows based on de novo assembly, while maintaining high accuracy in our various test data sets.

Gene Expression Profiling , RNA-Seq , Transcriptome , Workflow
Med (N Y) ; 2(4): 411-422.e5, 2021 04 09.
Article En | MEDLINE | ID: mdl-33521749

BACKGROUND: Coronavirus disease 2019 (COVID-19) primarily affects the lungs, but evidence of systemic disease with multi-organ involvement is emerging. Here, we developed a blood test to broadly quantify cell-, tissue-, and organ-specific injury due to COVID-19. METHODS: Our test leverages genome-wide methylation profiling of circulating cell-free DNA in plasma. We assessed the utility of this test to identify subjects with severe disease in two independent, longitudinal cohorts of hospitalized patients. Cell-free DNA profiling was performed on 104 plasma samples from 33 COVID-19 patients and compared to samples from patients with other viral infections and healthy controls. FINDINGS: We found evidence of injury to the lung and liver and involvement of red blood cell progenitors associated with severe COVID-19. The concentration of cell-free DNA correlated with the World Health Organization (WHO) ordinal scale for disease progression and was significantly increased in patients requiring intubation. CONCLUSIONS: This study points to the utility of cell-free DNA as an analyte to monitor and study COVID-19. FUNDING: This work was supported by NIH grants 1DP2AI138242 (to I.D.V.), R01AI146165 (to I.D.V., M.P.C., F.M.M., and J.R.), 1R01AI151059 (to I.D.V.), K08-CA230156 (to W.G.), and R33-AI129455 to C.Y.C., a Synergy award from the Rainin Foundation (to I.D.V.), a SARS-CoV-2 seed grant at Cornell (to I.D.V.), a National Sciences and Engineering Research Council of Canada fellowship PGS-D3 (to A.P.C.), and a Burroughs-Wellcome CAMS Award (to W.G.). D.C.V. is supported by a Fonds de la Recherche en Sante du Quebec Clinical Research Scholar Junior 2 award. C.Y.C. is supported by the California Initiative to Advance Precision Medicine, and the Charles and Helen Schwab Foundation.

COVID-19 , Cell-Free Nucleic Acids , Virus Diseases , Humans , Methylation , SARS-CoV-2/genetics
Neuro Oncol ; 23(9): 1470-1480, 2021 09 01.
Article En | MEDLINE | ID: mdl-33433612

BACKGROUND: Sixty percent of surgically resected brain metastases (BrM) recur within 1 year. These recurrences have long been thought to result from the dispersion of cancer cells during surgery. We tested the alternative hypothesis that invasion of cancer cells into the adjacent brain plays a significant role in local recurrence and shortened overall survival. METHODS: We determined the invasion pattern of 164 surgically resected BrM and correlated with local recurrence and overall survival. We performed single-cell RNA sequencing (scRNAseq) of >15,000 cells from BrM and adjacent brain tissue. Validation of targets was performed with a novel cohort of BrM patient-derived xenografts (PDX) and patient tissues. RESULTS: We demonstrate that invasion of metastatic cancer cells into the adjacent brain is associated with local recurrence and shortened overall survival. scRNAseq of paired tumor and adjacent brain samples confirmed the existence of invasive cancer cells in the tumor-adjacent brain. Analysis of these cells identified cold-inducible RNA-binding protein (CIRBP) overexpression in invasive cancer cells compared to cancer cells located within the metastases. Applying PDX models that recapitulate the invasion pattern observed in patients, we show that CIRBP is overexpressed in highly invasive BrM and is required for efficient invasive growth in the brain. CONCLUSIONS: These data demonstrate peritumoral invasion as a driver of treatment failure in BrM that is functionally mediated by CIRBP. These findings improve our understanding of the biology underlying postoperative treatment failure and lay the groundwork for rational clinical trial development based upon invasion pattern in surgically resected BrM.

Brain Neoplasms , Radiosurgery , Brain , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Humans , Neoplasm Recurrence, Local/genetics , RNA-Binding Proteins/genetics
Cell Genom ; 1(2)2021 Nov 10.
Article En | MEDLINE | ID: mdl-35072136

The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.

Sci Data ; 7(1): 376, 2020 11 09.
Article En | MEDLINE | ID: mdl-33168820

Both poly(A) enrichment and ribosomal RNA depletion are commonly used for RNA sequencing. Either has its advantages and disadvantages that may lead to biases in the downstream analyses. To better access these effects, we carried out both ribosomal RNA-depleted and poly(A)-selected RNA-seq for CD4+ T naive cells isolated from 40 healthy individuals from the Blueprint Project. For these 40 individuals, the genomic and epigenetic data were also available. This dataset offers a unique opportunity to understand how library construction influences differential gene expression, alternative splicing and molecular QTL (quantitative loci) analyses for human primary cells.

Poly A/genetics , RNA, Ribosomal/genetics , Sequence Analysis, RNA , T-Lymphocytes/metabolism , Alternative Splicing , Epigenomics , Gene Expression , Gene Library , Genomics , Humans , Quantitative Trait Loci