Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 154
1.
J Med Genet ; 2021 Nov 08.
Article En | MEDLINE | ID: mdl-34750192

BACKGROUND: Auriculocondylar syndrome (ARCND) is a rare genetic disease that affects structures derived from the first and second pharyngeal arches, mainly resulting in micrognathia and auricular malformations. To date, pathogenic variants have been identified in three genes involved in the EDN1-DLX5/6 pathway (PLCB4, GNAI3 and EDN1) and some cases remain unsolved. Here we studied a large unsolved four-generation family. METHODS: We performed linkage analysis, resequencing and Capture-C to investigate the causative variant of this family. To test the pathogenicity of the CNV found, we modelled the disease in patient craniofacial progenitor cells, including induced pluripotent cell (iPSC)-derived neural crest and mesenchymal cells. RESULTS: This study highlights a fourth locus causative of ARCND, represented by a tandem duplication of 430 kb in a candidate region on chromosome 7 defined by linkage analysis. This duplication segregates with the disease in the family (LOD score=2.88) and includes HDAC9, which is located over 200 kb telomeric to the top candidate gene TWIST1. Notably, Capture-C analysis revealed multiple cis interactions between the TWIST1 promoter and possible regulatory elements within the duplicated region. Modelling of the disease revealed an increased expression of HDAC9 and its neighbouring gene, TWIST1, in neural crest cells. We also identified decreased migration of iPSC-derived neural crest cells together with dysregulation of osteogenic differentiation in iPSC-affected mesenchymal stem cells. CONCLUSION: Our findings support the hypothesis that the 430 kb duplication is causative of the ARCND phenotype in this family and that deregulation of TWIST1 expression during craniofacial development can contribute to the phenotype.

2.
Front Immunol ; 12: 742881, 2021.
Article En | MEDLINE | ID: mdl-34650566

Despite the high number of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) symptoms worldwide, many exposed individuals remain asymptomatic and/or uninfected and seronegative. This could be explained by a combination of environmental (exposure), immunological (previous infection), epigenetic, and genetic factors. Aiming to identify genetic factors involved in immune response in symptomatic COVID-19 as compared to asymptomatic exposed individuals, we analyzed 83 Brazilian couples where one individual was infected and symptomatic while the partner remained asymptomatic and serum-negative for at least 6 months despite sharing the same bedroom during the infection. We refer to these as "discordant couples". We performed whole-exome sequencing followed by a state-of-the-art method to call genotypes and haplotypes across the highly polymorphic major histocompatibility complex (MHC) region. The discordant partners had comparable ages and genetic ancestry, but women were overrepresented (65%) in the asymptomatic group. In the antigen-presentation pathway, we observed an association between HLA-DRB1 alleles encoding Lys at residue 71 (mostly DRB1*03:01 and DRB1*04:01) and DOB*01:02 with symptomatic infections and HLA-A alleles encoding 144Q/151R with asymptomatic seronegative women. Among the genes related to immune modulation, we detected variants in MICA and MICB associated with symptomatic infections. These variants are related to higher expression of soluble MICA and low expression of MICB. Thus, quantitative differences in these molecules that modulate natural killer (NK) activity could contribute to susceptibility to COVID-19 by downregulating NK cell cytotoxic activity in infected individuals but not in the asymptomatic partners.


Asymptomatic Infections , COVID-19 , Histocompatibility Antigens , Major Histocompatibility Complex , SARS-CoV-2 , Adult , Aged , Brazil , COVID-19/genetics , COVID-19/immunology , Female , Genetic Predisposition to Disease , Genotype , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Humans , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Male , Middle Aged , Whole Exome Sequencing
3.
Clin Genet ; 2021 Oct 19.
Article En | MEDLINE | ID: mdl-34664255

Prediction of pathogenicity of rare copy number variations (CNVs), a genomic alteration known to contribute to the etiology of autism spectrum disorder (ASD), represents a serious limitation to interpreting genetic tests, particularly for genetic counseling purposes. Chromosomal microarray analysis (CMA) was conducted in a unique collection of 144 Brazilian individuals with ASD of strong European and African ancestries. Rare CNVs were detected in 39 patients: 41 of unknown significance (VUS), four pathogenic and one likely pathogenic CNVs (clinical yield of 4.1%; 5/122). Based on gene content and recurrence in three large cohorts [a Brazilian neurodevelopmental disorder cohort, the autism MSSNG cohort, and the Canadian-based Centre for Applied Genomics microarray database], this work strengthened the pathogenicity of 14 genes (FAT1, CAMK4, BIRC6, DPP6, CSMD1, CTNNA3, CDH8/CDH11, CDH13, OR1C1, CNTN6, CNTNAP4, FGF2 and PTPRN2) within 14 CNVs. Notably, enrichment of cell adhesion proteins to ASD etiology was identified (p < 0.05), highlighting the importance of these gene families in the etiology of ASD.

4.
Diagnostics (Basel) ; 11(8)2021 Aug 03.
Article En | MEDLINE | ID: mdl-34441334

Rapid diagnostics is pivotal to curb SARS-CoV-2 transmission, and saliva has emerged as a practical alternative to naso/oropharyngeal (NOP) specimens. We aimed to develop a direct RT-LAMP (reverse transcription loop-mediated isothermal amplification) workflow for viral detection in saliva, and to provide more information regarding its potential in curbing COVID-19 transmission. Clinical and contrived specimens were used to optimize formulations and sample processing protocols. Salivary viral load was determined in symptomatic patients to evaluate the clinical performance of the test and to characterize saliva based on age, gender and time from onset of symptoms. Our workflow achieved an overall sensitivity of 77.2% (n = 90), with 93.2% sensitivity, 97% specificity, and 0.895 Kappa for specimens containing >102 copies/µL (n = 77). Further analyses in saliva showed that viral load peaks in the first days of symptoms and decreases afterwards, and that viral load is ~10 times lower in females compared to males, and declines following symptom onset. NOP RT-PCR data did not yield relevant associations. This work suggests that saliva reflects the transmission dynamics better than NOP specimens, and reveals gender differences that may reflect higher transmission by males. This saliva RT-LAMP workflow can be applied to track viral spread and, to maximize detection, testing should be performed immediately after symptoms are presented, especially in females.

5.
Clin Genet ; 100(5): 615-623, 2021 11.
Article En | MEDLINE | ID: mdl-34341987

Congenital limb deficiency (CLD), one of the most common congenital anomalies, is characterized by hypoplasia/aplasia of one or more limb bones and can be isolated or syndromic. The etiology in CLD is heterogeneous, including environmental and genetic factors. A fraction remains with no etiological factor identified. We report the study of 44 Brazilian individuals presenting isolated or syndromic CLD, mainly with longitudinal defects. Genetic investigation included particularly next-generation sequencing (NGS) and/or chromosomal microarray. The overall diagnostic yield was 45.7%, ranging from 60.9% in the syndromic to 16.7% in the non-syndromic group. In TAR syndrome, a common variant in 3´UTR of RBM8A, in trans with 1q21.1 microdeletion, was detected, corroborating the importance of this recently reported variant in individuals of African ancestry. NGS established a diagnosis in three individuals in syndromes recently reported or still under delineation (an acrofacial dysostosis, Coats plus and Verheij syndromes), suggesting a broader phenotypic spectrum in these disorders. Although a low rate of molecular detection in non-syndromic forms was observed, it is still possible that variants in non-coding regions and small CNVs, not detected by the techniques applied in this study, could play a role in the etiology of CLD.

6.
Int J Mol Sci ; 22(14)2021 Jul 15.
Article En | MEDLINE | ID: mdl-34299197

In recent years, accumulating evidence has shown that the innate immune complement system is involved in several aspects of normal brain development and in neurodevelopmental disorders, including autism spectrum disorder (ASD). Although abnormal expression of complement components was observed in post-mortem brain samples from individuals with ASD, little is known about the expression patterns of complement molecules in distinct cell types in the developing autistic brain. In the present study, we characterized the mRNA and protein expression profiles of a wide range of complement system components, receptors and regulators in induced pluripotent stem cell (iPSC)-derived neural progenitor cells, neurons and astrocytes of individuals with ASD and neurotypical controls, which constitute in vitro cellular models that recapitulate certain features of both human brain development and ASD pathophysiology. We observed that all the analyzed cell lines constitutively express several key complement molecules. Interestingly, using different quantification strategies, we found that complement C4 mRNA and protein are expressed in significantly lower levels by astrocytes derived from ASD individuals compared to control astrocytes. As astrocytes participate in synapse elimination, and diminished C4 levels have been linked to defective synaptic pruning, our findings may contribute to an increased understanding of the atypically enhanced brain connectivity in ASD.


Astrocytes/pathology , Autism Spectrum Disorder/pathology , Complement C4/metabolism , Induced Pluripotent Stem Cells/pathology , Neural Stem Cells/pathology , Neurons/pathology , Astrocytes/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Cells, Cultured , Complement C4/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism
7.
Am J Med Genet C Semin Med Genet ; 187(3): 357-363, 2021 09.
Article En | MEDLINE | ID: mdl-34189818

Diagnosis of individuals affected by monogenic disorders was significantly improved by next-generation sequencing targeting clinically relevant genes. Whole exomes yield a large number of variants that require several filtering steps, prioritization, and pathogenicity classification. Among the criteria recommended by ACMG, those that rely on population databases critically affect analyses of individuals with underrepresented ancestries. Population-specific allelic frequencies need consideration when characterizing potential deleteriousness of variants. An orthogonal input for classification is annotation of variants previously classified as pathogenic as a criterion that provide supporting evidence widely sourced at ClinVar. We used a whole-genome dataset from a census-based cohort of 1,171 elderly individuals from São Paulo, Brazil, highly admixed, and unaffected by severe monogenic disorders, to investigate if pathogenic assertions in ClinVar are enriched with higher proportions of European ancestry, indicating bias. Potential loss of function (pLOF) variants were filtered from 4,250 genes associated with Mendelian disorders and annotated with ClinVar assertions. Over 1,800 single nucleotide pLOF variants were included, 381 had non-benign assertions. Among carriers (N = 463), average European ancestry was significantly higher than noncarriers (N = 708; p = .011). pLOFs in genomic contexts of non-European local ancestries were nearly three times less likely to have any ClinVar entry (OR = 0.353; p <.0001). Independent pathogenicity assertions are useful for variant classification in molecular diagnosis. However, European overrepresentation of assertions can promote distortions when classifying variants in non-European individuals, even in admixed samples with a relatively high proportion of European ancestry. The investigation and deposit of clinically relevant findings of diverse populations is fundamental improve this scenario.


Genetic Variation , Genomics , Aged , Brazil , Exome , High-Throughput Nucleotide Sequencing , Humans
8.
PeerJ ; 9: e11349, 2021.
Article En | MEDLINE | ID: mdl-33996288

Background: Type 2 diabetes mellitus (T2DM) and obesity are complex pandemic diseases in the 21st century. Worldwide, the T allele rs7903146 in the TCF7L2 gene is recognized as a strong GWAS signal associated with T2DM. However, the association between the C allele and obesity is still poorly explored and needs to be replicated in other populations. Thus, the primary objectives of this study were to evaluate the TCF7L2 rs7903146 association with T2DM according to BMI status and to determine if this variant is related to obesity and BMI variation in a cohort of elderly Brazilians. Methods: A total of 1,023 participants from an elderly census-based cohort called SABE (Saúde, Bem Estar e Envelhecimento-Health, Well-Being and Aging) were stratified by BMI status and type 2 diabetes presence. The TCF7L2 genotypes were filtered from the Online Archive of Brazilian Mutations (ABraOM-Online Archive of Brazilian Mutations) database, a web-based public database with sequencing data of samples of the SABE's participants. Logistic regression models and interaction analyses were performed. The BMI variation (∆BMI) was calculated from anthropometric data collected in up to two time-points with a ten-year-assessment interval. Results: The association between the rs7903146 T allele and T2DM was inversely proportional to the BMI status, with an increased risk in the normal weight group (OR 3.36; 95% CI [1.46-7.74]; P = 0.004). We confirmed the T allele association with risk for T2DM after adjusting for possible confound ing variables (OR 2.35; 95% CI [1.28-4.32]; P = 0.006). Interaction analysis showed that the increased risk for T2DM conferred by the T allele is modified by BMI (P interaction = 0.008), age (P interaction = 0.005) and gender (P interaction = 0.026). A T allele protective effect against obesity was observed (OR 0.71; 95% CI [0.54-0.94]; P = 0.016). The C allele increased obesity risk (OR 1.40; 95% CI [1.06-1.84]; P = 0.017) and the CC genotype showed a borderline association with abdominal obesity risk (OR 1.28; 95% CI [1.06-1.67]; P = 0.045). The CC genotype increased the obesity risk factor after adjusting for possible confounding variables (OR 1.41; 95% CI [1.06-1.86]; P = 0.017). An increase of the TT genotype in the second tertile of ∆BMI values was observed in participants without type 2 diabetes (OR 5.13; 95% CI [1.40-18.93]; P = 0.009) in the recessive genetic model. Conclusion: We confirmed that the rs7903146 is both associated with T2DM and obesity. The TCF7L2 rs7903146 T allele increased T2DM risk in the normal weight group and interacted with sex, age and BMI, while the C allele increased obesity risk. The TT genotype was associated with a lesser extent of BMI variation over the SABE study's 10-year period.

9.
Genet Mol Biol ; 44(1 Suppl 1): e20200302, 2021.
Article En | MEDLINE | ID: mdl-33651876

COVID-19 comprises clinical outcomes of SARS-CoV-2 infection and is highly heterogeneous, ranging from asymptomatic individuals to deceased young adults without comorbidities. There is growing evidence that host genetics play an important role in COVID-19 severity, including inborn errors of immunity, age-related inflammation and immunosenescence. Here we present a brief review on the known order of events from infection to severe system-wide disturbance due to COVID-19 and summarize potential candidate genes and pathways. Finally, we propose a strategy of subject's ascertainment based on phenotypic extremes to take part in genomic studies and elucidate intrinsic risk factors involved in COVID-19 severe outcomes.

10.
Int J Obes (Lond) ; 45(5): 1017-1029, 2021 05.
Article En | MEDLINE | ID: mdl-33633342

BACKGROUND/OBJECTIVES: Admixed populations are a resource to study the global genetic architecture of complex phenotypes, which is critical, considering that non-European populations are severely underrepresented in genomic studies. Here, we study the genetic architecture of BMI in children, young adults, and elderly individuals from the admixed population of Brazil. SUBJECTS/METHODS: Leveraging admixture in Brazilians, whose chromosomes are mosaics of fragments of Native American, European, and African origins, we used genome-wide data to perform admixture mapping/fine-mapping of body mass index (BMI) in three Brazilian population-based cohorts from Northeast (Salvador), Southeast (Bambuí), and South (Pelotas). RESULTS: We found significant associations with African-associated alleles in children from Salvador (PALD1 and ZMIZ1 genes), and in young adults from Pelotas (NOD2 and MTUS2 genes). More importantly, in Pelotas, rs114066381, mapped in a potential regulatory region, is significantly associated only in females (p = 2.76e-06). This variant is rare in Europeans but with frequencies of ~3% in West Africa and has a strong female-specific effect (95% CI: 2.32-5.65 kg/m2 per each A allele). We confirmed this sex-specific association and replicated its strong effect for an adjusted fat mass index in the same Pelotas cohort, and for BMI in another Brazilian cohort from São Paulo (Southeast Brazil). A meta-analysis confirmed the significant association. Remarkably, we observed that while the frequency of rs114066381-A allele ranges from 0.8 to 2.1% in the studied populations, it attains ~9% among women with morbid obesity from Pelotas, São Paulo, and Bambuí. The effect size of rs114066381 is at least five times higher than the FTO SNPs rs9939609 and rs1558902, already emblematic for their high effects. CONCLUSIONS: We identified six candidate SNPs associated with BMI. rs114066381 stands out for its high effect that was replicated and its high frequency in women with morbid obesity. We demonstrate how admixed populations are a source of new relevant phenotype-associated genetic variants.

11.
J Med Genet ; 2021 Jan 12.
Article En | MEDLINE | ID: mdl-33436522

BACKGROUND: Pathogenic heterozygous SIX1 variants (predominantly missense) occur in branchio-otic syndrome (BOS), but an association with craniosynostosis has not been reported. METHODS: We investigated probands with craniosynostosis of unknown cause using whole exome/genome (n=628) or RNA (n=386) sequencing, and performed targeted resequencing of SIX1 in 615 additional patients. Expression of SIX1 protein in embryonic cranial sutures was examined in the Six1 nLacZ/+ reporter mouse. RESULTS: From 1629 unrelated cases with craniosynostosis we identified seven different SIX1 variants (three missense, including two de novo mutations, and four nonsense, one of which was also present in an affected twin). Compared with population data, enrichment of SIX1 loss-of-function variants was highly significant (p=0.00003). All individuals with craniosynostosis had sagittal suture fusion; additionally four had bilambdoid synostosis. Associated BOS features were often attenuated; some carrier relatives appeared non-penetrant. SIX1 is expressed in a layer basal to the calvaria, likely corresponding to the dura mater, and in the mid-sagittal mesenchyme. CONCLUSION: Craniosynostosis is associated with heterozygous SIX1 variants, with possible enrichment of loss-of-function variants compared with classical BOS. We recommend screening of SIX1 in craniosynostosis, particularly when sagittal±lambdoid synostosis and/or any BOS phenotypes are present. These findings highlight the role of SIX1 in cranial suture homeostasis.

12.
Breast Cancer ; 28(2): 346-354, 2021 Mar.
Article En | MEDLINE | ID: mdl-32986223

BACKGROUND: It is estimated that 5-10% of breast cancer cases are hereditary. The identification of pathogenic germline variants allows individualized preventive health care, improvement of clinical management and genetic counseling. Studies in ethnically admixed Latin American populations have identified regions with increased frequency of deleterious variants in breast cancer predisposing genes. In this context, the Brazilian population exhibits great genetic heterogeneity, and is not well represented in international databases, which makes it difficult to interpret the clinical relevance of germline variants. METHODS: We evaluated the frequency of pathogenic/likely pathogenic (P/LP) germline variants in up to 37 breast cancer predisposing genes, in a cohort of 105 breast and/or ovarian cancer Brazilian women referred to two research centers between 2014 and 2019. RESULTS: A total of 22 patients (21%) were found to carry P/LP variants, and 16 VUS were detected in 15 patients (14.3%). Additionally, a novel pathogenic ATM intragenic deletion was identified in an early-onset breast cancer. We also detected a BRCA1 pathogenic variant (c.5074+2T>C) in higher frequency (10×) than in other studies with similar cohorts. CONCLUSIONS: Our findings contribute to the characterization of the genetic background of breast cancer predisposition in the Brazilian population as a useful resource to discriminate between deleterious variants and VUS, thus enabling improvement in the preventive health care and clinical management of carriers.


Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/genetics , Gene Deletion , Genetic Heterogeneity , Germ Cells/pathology , Germ-Line Mutation , Ovarian Neoplasms/genetics , Adult , Aged , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Brazil/epidemiology , Breast Neoplasms/epidemiology , Cohort Studies , Female , Genetic Predisposition to Disease , Genetic Testing , Humans , Middle Aged , Ovarian Neoplasms/epidemiology , Young Adult
14.
Stem Cell Res Ther ; 11(1): 501, 2020 11 25.
Article En | MEDLINE | ID: mdl-33239080

BACKGROUND: Bone reconstruction in congenital craniofacial differences, which affect about 2-3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stromal cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent cells that can be isolated via non-invasive procedures. In this study, we analyzed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during palatoplasty in cleft palate patients, represent a novel source of MSCs with osteogenic potential. METHODS: We obtained levator veli palatini muscle fragments (3-5 mm3), during surgical repair of cleft palate in 5 unrelated patients. Mesenchymal stromal cells were isolated from the muscle using a pre-plating technique and other standard practices. The multipotent nature of the isolated stromal cells was demonstrated via flow cytometry analysis and by induction along osteogenic, adipogenic, and chondrogenic differentiation pathways. To demonstrate the osteogenic potential of these cells in vivo, they were used to reconstruct a critical-sized full-thickness calvarial defect model in immunocompetent rats. RESULTS: Flow cytometry analysis showed that the isolated stromal cells were positive for mesenchymal stem cell antigens (CD29, CD44, CD73, CD90, and CD105) and negative for hematopoietic (CD34 and CD45) or endothelial cell markers (CD31). The cells successfully underwent osteogenic, chondrogenic, and adipogenic cell differentiation under appropriate cell culture conditions. Calvarial defects treated with CellCeram™ scaffolds seeded with the isolated levator veli palatini muscle cells showed greater bone healing compared to defects treated with acellular scaffolds. CONCLUSION: Cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stromal cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the surgical rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.


Cleft Palate , Mesenchymal Stem Cells , Palatal Muscles , Animals , Cleft Palate/therapy , Humans , Infant, Newborn , Muscle, Skeletal , Osteogenesis , Rats
15.
Am J Med Genet C Semin Med Genet ; 184(4): 896-911, 2020 12.
Article En | MEDLINE | ID: mdl-33128510

We report the clinical and molecular data of a large cohort comprising 242 individuals with RASopathies, from a single Tertiary Center in Brazil, the largest study from Latin America. Noonan syndrome represented 76% of the subjects, with heterozygous variants in nine different genes, mainly PTPN11, SOS1, RAF1, LZTR1, and RIT1, detected by Sanger and next-generation sequencing. The latter was applied to 126 individuals, with a positive yield of 63% in genes of the RAS/MAPK cascade. We present evidence that there are some allelic differences in PTPN11 across distinct populations. We highlight the clinical aspects that pose more medical concerns, such as the cardiac anomalies, bleeding diathesis and proliferative lesions. The genotype-phenotype analysis between the RASopathies showed statistically significant differences in some cardinal features, such as craniofacial and cardiac anomalies, the latter also statistically significant for different genes in Noonan syndrome. We present two individuals with a Noonan syndrome phenotype, one with an atypical, structural cardiac defect, harboring variants in genes mainly associated with isolated hypertrophic cardiomyopathy and discuss the role of these variants in their phenotype.


Noonan Syndrome , Brazil , Genotype , Humans , Mutation , Noonan Syndrome/genetics , Phenotype
16.
Stem Cell Reports ; 15(3): 776-788, 2020 09 08.
Article En | MEDLINE | ID: mdl-32857981

Neural crest cells (NCCs) contribute to several tissues during embryonic development. NCC formation depends on activation of tightly regulated molecular programs at the neural plate border (NPB) region, which initiate NCC specification and epithelial-to-mesenchymal transition (EMT). Although several approaches to investigate NCCs have been devised, these early events of NCC formation remain largely unknown in humans, and currently available cellular models have not investigated EMT. Here, we report that the E6 neural induction protocol converts human induced pluripotent stem cells into NPB-like cells (NBCs), from which NCCs can be efficiently derived. NBC-to-NCC induction recapitulates gene expression dynamics associated with NCC specification and EMT, including downregulation of NPB factors and upregulation of NCC specifiers, coupled with other EMT-associated cell-state changes, such as cadherin modulation and activation of TWIST1 and other EMT inducers. This strategy will be useful in future basic or translational research focusing on these early steps of NCC formation.


Epithelial-Mesenchymal Transition , Neural Crest/cytology , Neural Plate/cytology , Cell Line , Humans , Multipotent Stem Cells/cytology , Twist-Related Protein 1/metabolism , Up-Regulation
17.
BMC Genomics ; 21(1): 446, 2020 Jun 29.
Article En | MEDLINE | ID: mdl-32600246

BACKGROUND: Approximately 5% of the human genome shows common structural variation, which is enriched for genes involved in the immune response and cell-cell interactions. A well-established region of extensive structural variation is the glycophorin gene cluster, comprising three tandemly-repeated regions about 120 kb in length and carrying the highly homologous genes GYPA, GYPB and GYPE. Glycophorin A (encoded by GYPA) and glycophorin B (encoded by GYPB) are glycoproteins present at high levels on the surface of erythrocytes, and they have been suggested to act as decoy receptors for viral pathogens. They are receptors for the invasion of the protist parasite Plasmodium falciparum, a causative agent of malaria. A particular complex structural variant, called DUP4, creates a GYPB-GYPA fusion gene known to confer resistance to malaria. Many other structural variants exist across the glycophorin gene cluster, and they remain poorly characterised. RESULTS: Here, we analyse sequences from 3234 diploid genomes from across the world for structural variation at the glycophorin locus, confirming 15 variants in the 1000 Genomes project cohort, discovering 9 new variants, and characterising a selection of these variants using fibre-FISH and breakpoint mapping at the sequence level. We identify variants predicted to create novel fusion genes and a common inversion duplication variant at appreciable frequencies in West Africans. We show that almost all variants can be explained by non-allelic homologous recombination and by comparing the structural variant breakpoints with recombination hotspot maps, confirm the importance of a particular meiotic recombination hotspot on structural variant formation in this region. CONCLUSIONS: We identify and validate large structural variants in the human glycophorin A-B-E gene cluster which may be associated with different clinical aspects of malaria.


Genomic Structural Variation , Glycophorins/genetics , Malaria, Falciparum/genetics , Chromosome Breakpoints , Chromosome Mapping , Databases, Genetic , Disease Resistance , Humans , In Situ Hybridization, Fluorescence , Sequence Alignment , Whole Genome Sequencing
18.
Autism Res ; 13(2): 199-206, 2020 02.
Article En | MEDLINE | ID: mdl-31696658

Large genomic databases of neurodevelopmental disorders (NDD) are helpful resources of genomic variations in complex and heterogeneous conditions, as Autism Spectrum Disorder (ASD). We evaluated the role of rare copy number variations (CNVs) and exonic de novo variants, in a molecularly unexplored Brazilian cohort of 30 ASD trios (n = 90), by performing a meta-analysis of our findings in more than 20,000 patients from NDD cohorts. We identified three pathogenic CNVs: two duplications on 1q21 and 17p13, and one deletion on 4q35. CNVs meta-analysis (n = 8,688 cases and n = 3,591 controls) confirmed 1q21 relevance by identifying duplications in other 16 ASD patients. Exome analysis led the identification of seven de novo variants in ASD genes (SFARI list): three loss-of-function pathogenic variants in CUL3, CACNA1H, and SHANK3; one missense pathogenic variant in KCNB1; and three deleterious missense variants in ATP10A, ANKS1B, and DOCK1. From the remaining 12 de novo variants in non-previous ASD genes, we prioritized PRPF8 and RBM14. Meta-analysis (n = 13,754 probands; n = 2,299 controls) identified six and two additional patients with validated de novo variants in PRPF8 and RBM14, respectively. By comparing the de novo variants with a previously established mutational rate model, PRPF8 showed nominal significance before multiple test correction (P = 0.039, P-value adjusted = 0.079, binomial test), suggesting its relevance to ASD. Approximately 60% of our patients presented comorbidities, and the diagnostic yield was estimated in 23% (7/30: three pathogenic CNVs and four pathogenic de novo variants). Our uncharacterized Brazilian cohort with tetra-hybrid ethnic composition was a valuable resource to validate and identify possible novel candidate loci. Autism Res 2020, 13: 199-206. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: We believed that to study an unexplored autistic population, such as the Brazilian, could help to find novel genes for autism. In order to test this idea, with our limited budget, we compared candidate genes obtained from genomic analyses of 30 children and their parents, with those of more than 20,000 individuals from international studies. Happily, we identified a genetic cause in 23% of our patients and suggest a possible novel candidate gene for autism (PRPF8).


Autism Spectrum Disorder/genetics , Adolescent , Adult , Brazil , Child , Child, Preschool , Chromosome Deletion , Cohort Studies , DNA Copy Number Variations/genetics , Exome/genetics , Exons/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Young Adult
19.
J Neurodev Disord ; 11(1): 13, 2019 07 18.
Article En | MEDLINE | ID: mdl-31319798

BACKGROUND: Phelan-McDermid syndrome (PMS) is a rare genetic disorder characterized by global developmental delay, intellectual disability (ID), autism spectrum disorder (ASD), and mild dysmorphisms associated with several comorbidities caused by SHANK3 loss-of-function mutations. Although SHANK3 haploinsufficiency has been associated with the major neurological symptoms of PMS, it cannot explain the clinical variability seen among individuals. Our goals were to characterize a Brazilian cohort of PMS individuals, explore the genotype-phenotype correlation underlying this syndrome, and describe an atypical individual with mild phenotype. METHODOLOGY: A total of 34 PMS individuals were clinically and genetically evaluated. Data were obtained by a questionnaire answered by parents, and dysmorphic features were assessed via photographic evaluation. We analyzed 22q13.3 deletions and other potentially pathogenic copy number variants (CNVs) and also performed genotype-phenotype correlation analysis to determine whether comorbidities, speech status, and ASD correlate to deletion size. Finally, a Brazilian cohort of 829 ASD individuals and another independent cohort of 2297 ID individuals was used to determine the frequency of PMS in these disorders. RESULTS: Our data showed that 21% (6/29) of the PMS individuals presented an additional rare CNV, which may contribute to clinical variability in PMS. Increased pain tolerance (80%), hypotonia (85%), and sparse eyebrows (80%) were prominent clinical features. An atypical case diagnosed with PMS at 18 years old and IQ within the normal range is here described. Among Brazilian ASD or ID individuals referred to CNV analyses, the frequency of 22q13.3 deletion was 0.6% (5/829) and 0.61% (15/2297), respectively. Finally, renal abnormalities, lymphedema, and language impairment were found to be positively associated with deletion sizes, and the minimum deletion to cause these abnormalities is here suggested. CONCLUSIONS: This is the first work describing a cohort of Brazilian individuals with PMS. Our results confirm the impact of 22q13 deletions on ASD and several comorbidities, such as hypotonia. The estimation of a minimal deletion size for developing lymphedema and renal problem can assist prediction of prognosis in PMS individuals, particularly those diagnosed in early infancy. We also identified one atypical individual carrying SHANK3 deletion, suggesting that resilience to such mutations occurs. This case expands the clinical spectrum of variability in PMS and opens perspectives to identify protective mechanisms that can minimize the severity of this condition.


Autism Spectrum Disorder , Genetic Association Studies , Adolescent , Adult , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Brazil , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/complications , Chromosome Disorders/genetics , Chromosome Disorders/physiopathology , Chromosomes, Human, Pair 22/genetics , Cohort Studies , DNA Copy Number Variations/genetics , Female , Humans , Infant , Male , Nerve Tissue Proteins/genetics , Young Adult
20.
Am J Hum Genet ; 104(5): 925-935, 2019 05 02.
Article En | MEDLINE | ID: mdl-30982609

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.


Brain/abnormalities , Leukoencephalopathies/etiology , Mutation , Osteochondrodysplasias/etiology , Osteosclerosis/etiology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Adolescent , Adult , Alleles , Animals , Brain/metabolism , Brain/pathology , Child, Preschool , Female , Humans , Leukoencephalopathies/pathology , Male , Mice , Mice, Knockout , Osteochondrodysplasias/pathology , Osteosclerosis/pathology , Phenotype , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Young Adult
...