Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
3.
Brain Commun ; 3(3): fcab162, 2021.
Article En | MEDLINE | ID: mdl-34466801

Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system.

4.
Sci Adv ; 7(20)2021 May.
Article En | MEDLINE | ID: mdl-33980485

Intellectual disability encompasses a wide spectrum of neurodevelopmental disorders, with many linked genetic loci. However, the underlying molecular mechanism for more than 50% of the patients remains elusive. We describe pathogenic variants in SMARCA5, encoding the ATPase motor of the ISWI chromatin remodeler, as a cause of a previously unidentified neurodevelopmental disorder, identifying 12 individuals with de novo or dominantly segregating rare heterozygous variants. Accompanying phenotypes include mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Loss of function of the SMARCA5 Drosophila ortholog Iswi led to smaller body size, reduced sensory dendrite complexity, and tiling defects in larvae. In adult flies, Iswi neural knockdown caused decreased brain size, aberrant mushroom body morphology, and abnormal locomotor function. Iswi loss of function was rescued by wild-type but not mutant SMARCA5. Our results demonstrate that SMARCA5 pathogenic variants cause a neurodevelopmental syndrome with mild facial dysmorphia.

5.
Arch Dis Child ; 106(12): 1195-1201, 2021 12.
Article En | MEDLINE | ID: mdl-33741574

OBJECTIVE: The psychosocial impact of growing up with Silver-Russell syndrome (SRS), characterised by growth failure and short stature in adulthood, has been explored in adults; however, there are no accounts of contemporary lived experience in adolescents. Such data could inform current healthcare guidance and transition to adult services. We aimed to explore the lived experience of adolescents with SRS. DESIGN/SETTING/PATIENTS: In-depth, semi-structured interviews were conducted between January 2015 and October 2016 with a sample of eight adolescents aged 13-18 (five girls) with genetically confirmed SRS from the UK. Qualitative interviews were transcribed and coded to identify similarities and differences using thematic analysis; codes were then grouped to form overarching themes. RESULTS: We identified four themes from the interview data: (1) the psychosocial challenges of feeling and looking different; (2) pain, disability and fatigue; (3) anticipated stigma; and (4) building resilience and acceptance. Despite adolescents accepting SRS in their lives, they described ongoing psychosocial challenges and anticipated greater problems to come, such as stigma from prospective employers. CONCLUSIONS: Adolescents with SRS may experience psychosocial difficulties from as young as 10 years old related to feeling and looking different; pain, disability and fatigue; anticipated stigma; and future challenges around employment. We discuss these findings in relation to recommendations for the care of adolescents with SRS to prepare them for adult life.

6.
HGG Adv ; 2(1): 100015, 2021 Jan 14.
Article En | MEDLINE | ID: mdl-33537682

Histone deacetylases play crucial roles in the regulation of chromatin structure and gene expression in the eukaryotic cell, and disruption of their activity causes a wide range of developmental disorders in humans. Loss-of-function alleles of HDAC4, a founding member of the class IIa deacetylases, have been reported in brachydactyly-mental retardation syndrome (BDMR). However, while disruption of HDAC4 activity and deregulation of its downstream targets may contribute to the BDMR phenotype, loss of HDAC4 function usually occurs as part of larger deletions of chromosome 2q37; BDMR is also known as chromosome 2q37 deletion syndrome, and the precise role of HDAC4 within the phenotype remains uncertain. Thus, identification of missense variants should shed new light on the role of HDAC4 in normal development. Here, we report seven unrelated individuals with a phenotype distinct from that of BDMR, all of whom have heterozygous de novo missense variants that affect a major regulatory site of HDAC4, required for signal-dependent 14-3-3 binding and nucleocytoplasmic shuttling. Two individuals possess variants altering Thr244 or Glu247, whereas the remaining five all carry variants altering Pro248, a key residue for 14-3-3 binding. We propose that the variants in all seven individuals impair 14-3-3 binding (as confirmed for the first two variants by immunoprecipitation assays), thereby identifying deregulation of HDAC4 as a pathological mechanism in a previously uncharacterized developmental disorder.

7.
Am J Hum Genet ; 107(6): 1096-1112, 2020 12 03.
Article En | MEDLINE | ID: mdl-33232675

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.


Chromosomal Proteins, Non-Histone/genetics , Developmental Disabilities/genetics , Mutation, Missense , Phenotype , Tumor Suppressor Proteins/genetics , Adolescent , Animals , Child , Child, Preschool , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Genes, Dominant , Genetic Variation , Haploinsufficiency , Humans , Infant , Male , Microscopy, Confocal , Neuroglia/metabolism , Neurons/metabolism , Protein Binding , Zebrafish , Zebrafish Proteins/genetics
8.
J Clin Endocrinol Metab ; 105(6)2020 06 01.
Article En | MEDLINE | ID: mdl-32060556

CONTEXT: Congenital pituitary hormone deficiencies with syndromic phenotypes and/or familial occurrence suggest genetic hypopituitarism; however, in many such patients the underlying molecular basis of the disease remains unknown. OBJECTIVE: To describe patients with syndromic hypopituitarism due to biallelic loss-of-function variants in TBC1D32, a gene implicated in Sonic Hedgehog (Shh) signaling. SETTING: Referral center. PATIENTS: A Finnish family of 2 siblings with panhypopituitarism, absent anterior pituitary, and mild craniofacial dysmorphism, and a Pakistani family with a proband with growth hormone deficiency, anterior pituitary hypoplasia, and developmental delay. INTERVENTIONS: The patients were investigated by whole genome sequencing. Expression profiling of TBC1D32 in human fetal brain was performed through in situ hybridization. Stable and dynamic protein-protein interaction partners of TBC1D32 were investigated in HEK cells followed by mass spectrometry analyses. MAIN OUTCOME MEASURES: Genetic and phenotypic features of patients with biallelic loss-of-function mutations in TBC1D32. RESULTS: The Finnish patients harboured compound heterozygous loss-of-function variants (c.1165_1166dup p.(Gln390Phefs*32) and c.2151del p.(Lys717Asnfs*29)) in TBC1D32; the Pakistani proband carried a known pathogenic homozygous TBC1D32 splice-site variant c.1372 + 1G > A p.(Arg411_Gly458del), as did a fetus with a cleft lip and partial intestinal malrotation from a terminated pregnancy within the same pedigree. TBC1D32 was expressed in the developing hypothalamus, Rathke's pouch, and areas of the hindbrain. TBC1D32 interacted with proteins implicated in cilium assembly, Shh signaling, and brain development. CONCLUSIONS: Biallelic TBC1D32 variants underlie syndromic hypopituitarism, and the underlying mechanism may be via disrupted Shh signaling.


Adaptor Proteins, Signal Transducing/genetics , Biomarkers/analysis , Hypopituitarism/etiology , Mutation , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Hypopituitarism/pathology , Infant , Infant, Newborn , Male , Pedigree , Phenotype , Prognosis , Signal Transduction
9.
J Med Genet ; 57(10): 683-691, 2020 10.
Article En | MEDLINE | ID: mdl-32054688

BACKGROUND: Silver-Russell syndrome is an imprinting disorder that restricts growth, resulting in short adult stature that may be ameliorated by treatment. Approximately 50% of patients have loss of methylation of the imprinting control region (H19/IGF2:IG-DMR) on 11p15.5 and 5%-10% have maternal uniparental disomy of chromosome 7. Most published research focuses on the childhood phenotype. Our aim was to describe the phenotypic characteristics of older patients with SRS. METHODS: A retrospective cohort of 33 individuals with a confirmed molecular diagnosis of SRS aged 13 years or above were carefully phenotyped. RESULTS: The median age of the cohort was 29.6 years; 60.6% had a height SD score (SDS) ≤-2 SDS despite 70% having received growth hormone treatment. Relative macrocephaly, feeding difficulties and a facial appearance typical of children with SRS were no longer discriminatory diagnostic features. In those aged ≥18 years, impaired glucose tolerance in 25%, hypertension in 33% and hypercholesterolaemia in 52% were noted. While 9/33 accessed special education support, university degrees were completed in 40.0% (>21 years). There was no significant correlation between quality of life and height SDS. 9/25 were parents and none of the 17 offsprings had SRS. CONCLUSION: Historical treatment regimens for SRS were not sufficient for normal adult growth and further research to optimise treatment is justified. Clinical childhood diagnostic scoring systems are not applicable to patients presenting in adulthood and SRS diagnosis requires molecular confirmation. Metabolic ill-health warrants further investigation but SRS is compatible with a normal quality of life including normal fertility in many cases.


Insulin-Like Growth Factor II/genetics , RNA, Long Noncoding/genetics , Silver-Russell Syndrome/genetics , Uniparental Disomy/genetics , Adolescent , Adult , Aged , DNA Methylation/genetics , Epigenesis, Genetic , Female , Genomic Imprinting/genetics , Humans , Male , Middle Aged , Phenotype , Quality of Life , Silver-Russell Syndrome/pathology , Uniparental Disomy/pathology , Young Adult
11.
Genet Med ; 22(1): 124-131, 2020 01.
Article En | MEDLINE | ID: mdl-31316167

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Arachnodactyly/diagnosis , Contracture/diagnosis , Fibrillin-2/genetics , Sequence Analysis, DNA/methods , Arachnodactyly/genetics , Child , Contracture/genetics , Diagnosis, Differential , Early Diagnosis , Female , Genetic Testing , Humans , Male , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Phenotype , Retrospective Studies , Sensitivity and Specificity
12.
Hum Mutat ; 2019 Oct 23.
Article En | MEDLINE | ID: mdl-31646703

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.

14.
Arch Dis Child ; 104(1): 76-82, 2019 01.
Article En | MEDLINE | ID: mdl-29954740

OBJECTIVE: There is limited information on the psychosocial impact of growing up with Silver-Russell syndrome (SRS), characterised by slow growth in utero leading to short stature in adulthood. Such information could aid families in making difficult treatment decisions and guide management strategies for health professionals. We aimed to explore the lived experience of people with SRS across the lifespan. DESIGN/SETTING/PATIENTS: In-depth, semi-structured interviews were conducted between January 2015 and October 2016 with a sample of 15 adults (six women) with genetically confirmed SRS from the UK. Qualitative interviews were transcribed and coded to identify similarities and differences: codes were then grouped to form overarching themes. RESULTS: Four themes were identified from participant accounts: (1) appearance-related concerns extending beyond height; (2) strategies to deal with real and perceived threats; (3) women's experiences of pain, disability and feeling older than their years; and (4) feeling overlooked in romantic relationships. These themes show that other factors, beyond short stature, affect patient well-being and indicate a mismatch between patient need and healthcare provision. CONCLUSIONS: Challenges in SRS during childhood and adolescence were central to the psychosocial impact of SRS, and were not limited to height. These challenges, as well as symptoms such as pain and fatigue for women, have not previously been documented. To help individuals with SRS develop strategies to manage psychosocial issues, we recommend clinicians incorporate psychological services as an integral part of multidisciplinary teams managing individuals with SRS during childhood, adolescence and adulthood.


Adaptation, Psychological/physiology , Body Height , Dwarfism , Pain , Silver-Russell Syndrome , Adult , Child , Disability Evaluation , Dwarfism/etiology , Dwarfism/physiopathology , Dwarfism/psychology , Fatigue/diagnosis , Fatigue/etiology , Female , Humans , Male , Needs Assessment , Pain/diagnosis , Pain/etiology , Psychology , Sex Factors , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/epidemiology , Silver-Russell Syndrome/physiopathology , Silver-Russell Syndrome/psychology , United Kingdom/epidemiology
15.
J Med Genet ; 55(12): 803-813, 2018 12.
Article En | MEDLINE | ID: mdl-30287594

BACKGROUND: Progressive encephalopathy, hypsarrhythmia and optic atrophy (PEHO) has been described as a clinically distinct syndrome. It has been postulated that it is an autosomal recessive condition. However, the aetiology is poorly understood, and the genetic basis of the condition has not been fully elucidated. Our objective was to discover if PEHO syndrome is a single gene disorder. METHOD: Children with PEHO and PEHO-like syndrome were recruited. Clinical, neurological and dysmorphic features were recorded; EEG reports and MRI scans were reviewed. Where possible, exome sequencing was carried out first to seek mutations in known early infantile developmental and epileptic encephalopathy (DEE) genes and then to use an agnostic approach to seek novel candidate genes. We sought intra-interfamilial phenotypic correlations and genotype-phenotype correlations when pathological mutations were identified. RESULTS: Twenty-three children were recruited from a diverse ethnic background, 19 of which were suitable for inclusion. They were similar in many of the core and the supporting features of PEHO, but there was significant variation in MRI and ophthalmological findings, even between siblings with the same mutation. A pathogenic genetic variant was identified in 15 of the 19 children. One further girl's DNA failed analysis, but her two affected sisters shared confirmed variants. Pathogenic variants were identified in seven different genes. CONCLUSIONS: We found significant clinical and genetic heterogeneity. Given the intrafamily variation demonstrated, we question whether the diagnostic criteria for MRI and ophthalmic findings should be altered. We also question whether PEHO and PEHO-like syndrome represent differing points on a clinical spectrum of the DEE. We conclude that PEHO and PEHO-like syndrome are clinically and genetically diverse entities-and are phenotypic endpoints of many severe genetic encephalopathies.


Brain Edema/diagnosis , Brain Edema/etiology , Epilepsy/diagnosis , Epilepsy/genetics , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/etiology , Optic Atrophy/diagnosis , Optic Atrophy/etiology , Spasms, Infantile/diagnosis , Spasms, Infantile/etiology , Age Factors , Alleles , Biomarkers , Child, Preschool , Electroencephalography , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Genotype , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Mutation , Pedigree , Phenotype
16.
Front Genet ; 9: 149, 2018.
Article En | MEDLINE | ID: mdl-29922329

Repeats in coding and non-coding regions have increasingly been associated with many human genetic disorders, such as Richieri-Costa-Pereira syndrome (RCPS). RCPS, mostly characterized by midline cleft mandible, Robin sequence and limb defects, is an autosomal-recessive acrofacial dysostosis mainly reported in Brazilian patients. This disorder is caused by decreased levels of EIF4A3, mostly due to an increased number of repeats at the EIF4A3 5'UTR. EIF4A3 5'UTR alleles are CG-rich and vary in size and organization of three types of motifs. An exclusive allelic pattern was identified among affected individuals, in which the CGCA-motif is the most prevalent, herein referred as "disease-associated CGCA-20nt motif." The origin of the pathogenic alleles containing the disease-associated motif, as well as the functional effects of the 5'UTR motifs on EIF4A3 expression, to date, are entirely unknown. Here, we characterized 43 different EIF4A3 5'UTR alleles in a cohort of 380 unaffected individuals. We identified eight heterozygous unaffected individuals harboring the disease-associated CGCA-20nt motif and our haplotype analyses indicate that there are more than one haplotype associated with RCPS. The combined analysis of number, motif organization and haplotypic diversity, as well as the observation of two apparently distinct haplotypes associated with the disease-associated CGCA-20nt motif, suggest that the RCPS alleles might have arisen from independent unequal crossing-over events between ancient alleles at least twice. Moreover, we have shown that the number and sequence of motifs in the 5'UTR region is associated with EIF4A3 repression, which is not mediated by CpG methylation. In conclusion, this study has shown that the large number of repeats in EIF4A3 does not represent a dynamic mutation and RCPS can arise in any population harboring alleles with the CGCA-20nt motif. We also provided further evidence that EIF4A3 5'UTR is a regulatory region and the size and sequence type of the repeats at 5'UTR may contribute to clinical variability in RCPS.

17.
Eur J Hum Genet ; 26(9): 1288-1293, 2018 09.
Article En | MEDLINE | ID: mdl-29891876

Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) is an autosomal-dominant skeletal dysplasia characterised by metaphyseal flaring of the long bones, enlargement of the medial halves of the clavicles, maxillary hypoplasia, brachydactyly, dental anomalies and mild osteoporosis. To date, only one large French Canadian family and a Finnish woman have been reported with the condition. In both, intragenic duplication encompassing exons 3-5 of the RUNX2 gene was identified. We describe a new, three-generation family with clinical features of MDMHB and an intragenic tandem duplication of RUNX2 exons 3-6. Dental problems were the primary presenting feature in all four affected individuals. We compare the features in our family to those previously reported in MDMHB, review the natural history of this condition and highlight the importance of considering an underlying skeletal dysplasia in patients presenting with significant dental problems and other suggestive features, including disproportionate short stature and/or digital anomalies.


Brachydactyly/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Jaw Abnormalities/genetics , Osteochondrodysplasias/genetics , Tooth Abnormalities/genetics , Adult , Aged , Brachydactyly/pathology , Female , Gene Duplication , Humans , Jaw Abnormalities/pathology , Male , Middle Aged , Osteochondrodysplasias/pathology , Pedigree , Syndrome , Tooth Abnormalities/pathology
18.
Am J Med Genet A ; 176(5): 1238-1244, 2018 05.
Article En | MEDLINE | ID: mdl-29681091

Pathogenic variants in Zinc Finger DHHC-Type Containing 9 (ZDHHC9) gene have been identified as the cause of X-linked intellectual disability (XLID) in a small number of families. There are a total of 11 reported pathogenic variants in ZDHHC9 in the literature. The majority of reported variants are familial point mutations. There is one report of XLID associated with a de novo mutation in ZDHHC9, and one family with intragenic deletion within ZDHHC9 detected by array CGH. Although initial reports of families with ZDHHC9 pathogenic variants suggested a nonsyndromic XLID, more recent reports suggest a syndromic phenotype with facial dysmorphism. Here we report four patients with pathogenic variants in ZDHHC9, a family with two siblings and their maternal uncle who presented with XLID due to intragenic deletion of ZDHHC9 detected by array CGH and an 11-year-old boy with a de novo pathogenic missense variant in ZDHHC9, which is the first recurrent ZDHHC9 mutation. Our patients had some distinctive facial features in common, including elongated and down-slanting palpebral fissures and high hairline. Marfanoid habitus and seizures that have been previously reported in association with pathogenic variants in ZDHHC9 were absent in our cohort. Clinical information on patients with ZDHHC9-associated XLID is very scarce. New reports of families with detailed clinical description will add to the existing knowledge and help understand the condition better.


Acyltransferases/genetics , Genetic Association Studies , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Mutation , Phenotype , Adolescent , Alleles , Child , Comparative Genomic Hybridization , Facies , Female , Genetic Association Studies/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Pedigree
19.
J Med Genet ; 55(7): 497-504, 2018 07.
Article En | MEDLINE | ID: mdl-29574422

BACKGROUND: Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. METHODS: Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. RESULTS: We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. CONCLUSION: The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.


Adaptor Proteins, Signal Transducing/genetics , Beckwith-Wiedemann Syndrome/genetics , Protein-Arginine Deiminases/genetics , Silver-Russell Syndrome/genetics , Apoptosis Regulatory Proteins , Beckwith-Wiedemann Syndrome/pathology , Chromosomes, Human, Pair 11/genetics , DNA Methylation/genetics , Female , Genomic Imprinting/genetics , Germ-Line Mutation/genetics , Humans , Infant, Newborn , Infant, Newborn, Diseases/genetics , Infant, Newborn, Diseases/physiopathology , Maternal Inheritance , Pedigree , Pregnancy , Protein-Arginine Deiminase Type 6 , Silver-Russell Syndrome/physiopathology
20.
Nat Genet ; 50(5): 767, 2018 05.
Article En | MEDLINE | ID: mdl-29440723

In the version of this article initially published, Wendy Bickmore and Madapura Pradeepa were incorrectly not indicated as corresponding authors. The error has been corrected in the HTML and PDF versions of the paper.

...