Your browser doesn't support javascript.
: 20 | 50 | 100
1 - 20 de 481.834
Mol Cell Endocrinol ; 544: 111541, 2022 03 15.
Article En | MEDLINE | ID: mdl-34973370

Glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH) accounts for a big portion of non-traumatic ONFH; nevertheless, the pathogenesis has not yet been fully understood. GC-induced endothelial dysfunction might be a major contributor to ONFH progression. The Gene Expression Omnibus (GEO) dataset was analyzed to identify deregulated miRNAs in ONFH; among deregulated miRNAs, the physiological functions of miR-122-5p on ONFH and endothelial dysfunction remain unclear. In the present study, miR-122-5p showed to be under-expressed within GC-induced ONFH femoral head tissues and GC-stimulated bone microvascular endothelial cells (BMECs). In human umbilical vein endothelial cells (HUVECs) and BMECs, GC stimulation significantly repressed cell viability, promoted cell apoptosis and increased the mRNA expression of proinflammatory cytokines, such as TNF-α, IL-1ß, and IFN-γ. After overexpressing miR-122-5p, GC-induced endothelial injuries were attenuated, as manifested by rescued cell viability, cell migration, and tube formation capacity. Regarding the BMP signaling, GC decreased the protein levels of BMP-2/6/7 and SMAD-1/5/8, whereas miR-122-5p overexpression significantly attenuated the inhibitory effects of GC on these proteins. Online tool and experimental analyses revealed the direct binding between miR-122-5p and GREM2, a specific antagonist of BMP-2. In contrast to miR-122-5p overexpression, GREM2 overexpression aggravated GC-induced endothelial injury; GREM2 silencing partially eliminated the effects of miR-122-5p inhibition on GC-stimulated HUVECs and BMECs. Finally, GREM2 silencing reversed the suppressive effects of GC on BMP-2/6/7 and SMAD-1/5/8, and attenuated the effects of miR-122-5p inhibition on these proteins upon GC stimulation. Conclusively, the present study demonstrates a miR-122-5p/GREM2 axis modulating the GC-induced endothelial damage via the BMP/SMAD signaling. Considering the critical role of endothelial function in ONFH pathogenesis, the in vivo role and clinical application of the miR-122-5p/GREM2 axis is worthy of further investigation.

Glucocorticoids , MicroRNAs , Apoptosis , Cytokines/metabolism , Femur Head/metabolism , Femur Head/pathology , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
Mol Biol Rep ; 49(3): 2085-2095, 2022 Mar.
Article En | MEDLINE | ID: mdl-34988890

BACKGROUND: Scutellarein, a widely studied ingredient of scutellaria herbs, has higher bioavailability and solubility than that of scutellarin. Although the scutellarein had been reported to modulate numerous biological functions, its ability in suppressing cardiac hypertrophy remains unclear. Hence, the present study attempted to investigate whether scutellarein played critical roles in preventing phenylephrine (PE)-induced cardiac hypertrophy. METHODS AND RESULTS: Immunocytochemistry (ICC) was employed for evaluating the morphology of the treated cardiomyocytes. Real-time PCR and western blot were respectively applied to assess the mRNA levels and protein expression of the relevant molecules. Bioinformatics analyses were carried out to investigate the potential mechanisms by which scutellarein modulated the PE-induced cardiac hypertrophy. The results showed that Scutellarein treatment significantly inhibited PE-induced increase in H9c2 and AC16 cardiomyocyte size. Besides, scutellarein treatment also dramatically suppressed the expression of the cardiac hypertrophic markers: ANP, BNP and ß-MHC. Furthermore, the effects of scutellarein on attenuating the cardiac hypertrophy might be mediated by suppressing the activity of TRAF2/NF-κB signaling pathway. CONCLUSIONS: Collectively, our data indicated that scutellarein could protect against PE-induced cardiac hypertrophy via regulating TRAF2/NF-κB signaling pathway using in vitro experiments.

Apigenin , Cardiomegaly , NF-kappa B , Apigenin/pharmacology , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Humans , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Signal Transduction , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 2/pharmacology
Arch Pharm Res ; 45(3): 159-173, 2022 Mar.
Article En | MEDLINE | ID: mdl-35334088

Renal fibrosis is defined by excessive extracellular matrix (ECM) accumulation and is associated with a decreased kidney function. Increased inflammation and infiltration of inflammatory cells are the key features of renal fibrosis development; however, the mechanism of how inflammation starts is still un-known. Here, we show that the activation of epithelial Protease-activating receptor 2 (PAR2) signaling plays an important role in the initiation of inflammation via increased chemokine expression and inflammatory cell induction. In the adenine diet-induced renal fibrosis mouse model, PAR2 expression was significantly increased in the renal tubule region. Kidneys from PAR2-knockout mice were protected from adenine diet-induced renal fibrosis, kidney dysfunction, and inflammation. Using NRK52E kidney epithelial cells, we further elucidated the mechanisms underlying these processes. Activation of PAR2 signaling pathway by PAR2 agonist specifically increased the levels of chemokines, including MCP1 and MCP3, via the MAPK-NF-κB signaling pathway. Inhibition of the MAPK signaling pathway attenuated PAR2 agonist-induced NF-κB activation, chemokine expression, and macrophage cell induction. Furthermore, PAR2 activation directly increased mesenchymal cell markers in epithelial cells. Taken together, we found that increased PAR2 expression and the PAR2/MAPK signaling pathway promote renal fibrosis by increasing the inflammatory responses and promoting EMT process.

Kidney Diseases , Peptide Hydrolases , Receptor, PAR-2 , Animals , Fibrosis , Kidney/pathology , Kidney Diseases/metabolism , Mice , Peptide Hydrolases/metabolism , Receptor, PAR-2/metabolism , Signal Transduction
Mol Psychiatry ; 27(1): 731-743, 2022 Jan.
Article En | MEDLINE | ID: mdl-34163013

The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.

Receptors, N-Methyl-D-Aspartate , Schizophrenia , Humans , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/genetics , Signal Transduction
Immunol Cell Biol ; 100(4): 267-284, 2022 Apr.
Article En | MEDLINE | ID: mdl-35201640

Toll-like receptor (TLR) signaling relies on Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor proteins that recruit downstream signaling molecules to generate tailored immune responses. In addition, the palmitoylated transmembrane adaptor protein family member Scimp acts as a non-TIR-containing adaptor protein in macrophages, scaffolding the Src family kinase Lyn to enable TLR phosphorylation and proinflammatory signaling responses. Here we report the existence of a smaller, naturally occurring translational variant of Scimp (Scimp TV1), which is generated through leaky scanning and translation at a downstream methionine. Scimp TV1 also scaffolds Lyn, but in contrast to full-length Scimp, it is basally rather than lipopolysaccharide (LPS)-inducibly phosphorylated. Macrophages from mice that selectively express Scimp TV1, but not full-length Scimp, have impaired sustained LPS-inducible cytokine responses. Furthermore, in granulocyte macrophage colony-stimulating factor-derived myeloid cells that express high levels of Scimp, selective overexpression of Scimp TV1 enhances CpG DNA-inducible cytokine production. Unlike full-length Scimp that localizes to the cell surface and filopodia, Scimp TV1 accumulates in intracellular compartments, particularly the Golgi. Moreover, this variant of Scimp is not inducibly phosphorylated in response to CpG DNA, suggesting that it may act via an indirect mechanism to enhance TLR9 responses. Our findings thus reveal the use of alternative translation start sites as a previously unrecognized mechanism for diversifying TLR responses in the innate immune system.

Signal Transduction , Toll-Like Receptors , Animals , DNA/metabolism , Macrophages/metabolism , Mice , Toll-Like Receptors/metabolism , src-Family Kinases/metabolism
In Vitro Cell Dev Biol Anim ; 58(2): 169-178, 2022 Feb.
Article En | MEDLINE | ID: mdl-35194763

Cell adhesion to extracellular matrix proteins mediates resistance to radio- and chemotherapy by activating integrin signaling. In addition, mutual and cooperative interactions between integrin and growth factor receptor signaling contribute to the cellular radiation response. Here, we investigate to which extend the crosstalk between ß1 integrins and growth factor receptor signaling determines the cellular radiation response of fibroblasts by assessing clonogenic survival and cell cycling. By utilizing growth factor signaling competent and either ß1 integrin wildtype GD25ß1A fibroblasts or ß1 integrin mutant, signaling incompetent GD25ß1B fibroblasts, we show basal clonogenic survival to depend on growth factor receptor but not integrin signaling. Our data further suggest the cooperation between ß1 integrins and growth factor receptors to be critical for enhancing the radiation-induced G2/M cell cycle block leading to improved clonogenic radiation survival. By pharmacological inhibition of EGFR and PI3K, we additionally show that the essential contribution of EGFR signaling to radiogenic G2/M cell cycle arrest depends on the co-activation of the ß1 integrin signaling axis, but occurs independent of PI3K. Taken together, elucidation of the signaling circuitry underlying the EGFR/ß1 integrin crosstalk may support the development of advanced molecular targeted therapies for radiation oncology.

Integrin beta1 , Signal Transduction , Animals , Cell Cycle , Fibroblasts/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Receptors, Growth Factor/metabolism
Cell Mol Biol Lett ; 27(1): 2, 2022 Jan 03.
Article En | MEDLINE | ID: mdl-34979914

Sestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.

Nuclear Proteins , Sestrins , Autophagy , Heat-Shock Proteins/metabolism , Humans , Nuclear Proteins/metabolism , Oxidative Stress/physiology , Signal Transduction/physiology
Head Face Med ; 18(1): 15, 2022 May 06.
Article En | MEDLINE | ID: mdl-35524269

BACKGROUND: Adenoid cystic carcinoma (ACC) is one of the most common malignant salivary gland tumors. Moreover, the unique biological characteristics and complex structures of ACC contribute to its poor survival rates. Recently, proteasome inhibitors have been shown to elicit satisfactory therapeutic effects in the treatment of certain solid tumors, but few studies have been implemented to investigate the effects of proteasome inhibitor therapy for ACC. METHODS: In this present study, cell counting kit-8 assay and flow cytometry assay were performed to examine the effects of proteasome inhibitor (MG132) on cell viability and apoptosis. We applied western blot and immunofluorescence staining to explore the expression of the Nrf2/Keap1 signaling pathway and P62, additionally Nrf2 inhibitor (ML385) was utilized to evaluate the role of Nrf2/Keap1 signaling pathway in MG132-induced cell apoptosis. RESULTS: Our data indicated that MG132 significantly suppressed the growth of ACC-83 cells(MG132 10µM P = 0.0046; 40µM P = 0.0033; 70µM P = 0.0007 versus control) and induced apoptosis (MG132 10µM P = 0.0458; 40µM P = 0.0018; 70µM P = 0.0087 versus control). The application of MG132 induced the up-regulation of Nrf2/Keap1 signaling pathway. Furthermore, inhibition of Nrf2 attenuated the therapeutic effects of MG132 for ACC (both ML385 + MG132 10µM P = 0.0013; 40µM P = 0.0057; 70µM P = 0.0003 versus MG132). P < 0.05 was considered statistically significant. CONCLUSIONS: Our results revealed that proteasome inhibitors MG132 could inhibit the cell viability and induce the apoptosis of ACC through Nrf2/Keap1 signaling pathway.

Carcinoma, Adenoid Cystic , NF-E2-Related Factor 2 , Carcinoma, Adenoid Cystic/drug therapy , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Leupeptins , NF-E2-Related Factor 2/metabolism , Proteasome Inhibitors/pharmacology , Signal Transduction
Methods Enzymol ; 667: 1-35, 2022.
Article En | MEDLINE | ID: mdl-35525538

The PEAK family of pseudokinases, which comprises PEAK1, PEAK2 and PEAK3, are newly identified scaffolds that dynamically assemble oncogenic signaling pathways known to contribute to the development of several aggressive cancers. A striking feature of this unique family of pseudokinase scaffolds is their large multi-domain structure, which allows them to achieve protein complex assemblies through their structural plasticity and functional versatility. Recent structural advances have begun to reveal the critical regulatory elements that control their function. Specifically, the dimer-dependent scaffolding activity of PEAK pseudokinases is emerging as a critical mechanism for their signaling function, in addition to their ability to hetero-associate to form higher-order regulatory networks to diversify and amplify their signaling output. Here, we present a suite of techniques that enable the efficient expression and purification of PEAK proteins for functional characterization.

Neoplasms , Signal Transduction , Carcinogenesis , Humans
Methods Enzymol ; 667: 339-363, 2022.
Article En | MEDLINE | ID: mdl-35525546

The majority of drug screening approaches are performed using recombinant proteins, however, drug binding to its target(s) in cells should be also assessed, especially for drugs aimed at modulating intracellular signaling pathways. As a result, the development of a cellular thermal shift assay (CETSA) has become an important tool for determining the binding affinity of drugs to their intracellular targets. Cell lines, such as Ba/F3, are an excellent model system to stably express and study a target protein when this protein is not endogenously expressed or only present at low levels. Together with CETSA, Ba/F3 clones allow study of the transforming properties of the protein in question, its downstream intracellular signaling activation pathways, as well as its drug binding kinetics. This chapter describes in detail the establishment of Ba/F3 clones stably expressing receptor pseudokinases, such as receptor tyrosine kinase-like orphan receptors (ROR1, ROR2) and protein tyrosine kinase 7 (PTK7), and the use thereof to evaluate binding of small molecule inhibitors to their intracellular (pseudo)kinase domain by CETSA.

Signal Transduction , Cell Line , Cells, Cultured , Clone Cells , Kinetics
Methods Enzymol ; 667: 365-402, 2022.
Article En | MEDLINE | ID: mdl-35525547

Pseudokinases often operate through functionally related enzymes and receptors. A prime example is the pseudokinase KSR (Kinase Suppressor of RAS), which can act as both an amplifier and inhibitor of members in the RAS-MAPK (Mitogen Activated Protein Kinase) signaling pathway. KSR is structurally related to the active RAF kinases over multiple domains; moreover, the pseudokinase domain of KSR forms physical and regulatory complexes with both RAF and MEK through distinct interfaces. Characterization of small molecule interactions on KSR has been used to uncover novel chemical tools and understand the mechanism of action of clinical drugs. Here, we elaborate on assays and structural methods for measuring binding at orthosteric and interfacial binding sites on KSR. These distinct small molecule pockets provide therapeutic paths for targeting KSR1 and KSR2 pseudokinases in disease, including in RAS and RAF mutant cancers.

Protein Kinases , Binding Sites , Molecular Conformation , Phosphorylation , Protein Kinases/chemistry , Proto-Oncogene Proteins c-raf/metabolism , Signal Transduction
Methods Enzymol ; 667: 455-505, 2022.
Article En | MEDLINE | ID: mdl-35525551

HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.

Receptor, ErbB-2 , Receptor, ErbB-3 , Humans , Nucleotides/metabolism , Phosphorylation , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Signal Transduction/physiology
Methods Enzymol ; 667: 685-727, 2022.
Article En | MEDLINE | ID: mdl-35525559

Kinase inhibition continues to be a major focus of pharmaceutical research and discovery due to the central role of these proteins in the regulation of cellular processes. One family of kinases of pharmacological interest, due to its role in activation of immunostimulatory pathways, is the Janus kinase family. Small molecule inhibitors targeting the individual kinase proteins within this family have long been sought-after therapies. High sequence and structural similarity of the family members makes selective inhibitors difficult to identify but critical because of their inter-related multiple cellular regulatory pathways. Herein, we describe the identification of inhibitors of the important Janus kinase, TYK2, a regulator of type I interferon response. In addition, the biochemical and structural confirmation of the direct interaction of these small molecules with the TYK2 pseudokinase domain is described and a potential mechanism of allosteric regulation of TYK2 activity through stabilization of the pseudokinase domain is proposed.

Janus Kinases , TYK2 Kinase , Allosteric Regulation , Janus Kinases/metabolism , Signal Transduction , TYK2 Kinase/chemistry , TYK2 Kinase/metabolism
Stem Cell Res Ther ; 13(1): 188, 2022 May 07.
Article En | MEDLINE | ID: mdl-35526071

BACKGROUND: Accumulating evidence supports that prostate cancer stem-like cells (PCSCs) play significant roles in therapy resistance and metastasis of prostate cancer. Many studies also show that nitric oxide (NO) synthesized by NO synthases can function to promote tumor progression. However, the exact roles of NOSs and NO signaling in the growth regulation of PCSCs and castration-resistant prostate cancer (CRPC) are still not fully understood. METHODS: The regulatory functions of NOS-NO signaling were evaluated in prostate cancer cells, especially in PCSCs enriched by 3D spheroid culture and CD133/CD44 cell sorting. The molecular mechanisms of NOS-NO signaling in PCSCs growth regulation and tumor metastasis were investigated in PCSCs and mice orthotopic prostate tumor model. RESULTS: Endothelial NOS (eNOS) exhibited a significant upregulation in high-grade prostate cancer and metastatic CRPC. Xenograft models of CRPC exhibited notable increased eNOS expression and higher intracellular NO levels. PCSCs isolated from various models displayed significant enhanced eNOS-NO signaling. Functional analyses demonstrated that increased eNOS expression could promote in vivo tumorigenicity and metastatic potential of prostate cancer cells. Characterization of eNOS-NO involved downstream pathway which confirmed that enhanced eNOS signaling could promote the growth of PCSCs and antiandrogen-resistant prostate cancer cells via an activated downstream NO-sGC-cGMP-PKG effector signaling pathway. Interestingly, eNOS expression could be co-targeted by nuclear receptor ERRα and transcription factor ERG in prostate cancer cells and PCSCs. CONCLUSIONS: Enhanced eNOS-NO signaling could function to promote the growth of PCSCs and also the development of metastatic CRPC. Besides eNOS-NO as potential targets, targeting its upstream regulators (ERRα and ERG) of eNOS-NO signaling could also be the therapeutic strategy for the management of advanced prostate cancer, particularly the aggressive cancer carrying with the TMPRSS2:ERG fusion gene.

Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Animals , Cell Line, Tumor , Humans , Male , Mice , Neoplastic Stem Cells/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Prostate/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction
Biochemistry (Mosc) ; 87(3): 269-293, 2022 Mar.
Article En | MEDLINE | ID: mdl-35526848

A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.

Cnidaria , Animals , Cnidaria/genetics , Cnidaria/metabolism , Genome , High-Throughput Nucleotide Sequencing , Signal Transduction , Transcriptome
J Toxicol Sci ; 47(5): 183-192, 2022.
Article En | MEDLINE | ID: mdl-35527006

Maternal lead exposure is associated with poor outcomes in fetal brain development such as cognitive dysfunction. Here, we aimed to reveal the effect and mechanism of omega-3 fatty acids in ameliorating maternal lead exposure-induced cognitive impairment in mouse offspring. The activity levels of locomotor and anxiety, memory and learning capacity, spatial working memory, and cognitive behavioral function were determined using the open field test, Morris water maze, Y-maze, and nest-building test, respectively. The protein levels of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured using enzyme-linked immunosorbent assay or Western blot. The mRNA levels of BDNF, tyrosine kinase B (TrkB) and cyclic AMP response element binding protein (CREB) were measured by real-time qPCR. Malondialdehyde (MDA) and anti-oxidants, including SOD, GSH and CAT, were measured using bioassay kits. We found that supplementing omega-3 significantly improved cognitive behavioral function in offspring after prenatal lead exposure. The protein and mRNA levels of BDNF, TrkB and CREB in the prenatal lead exposure group were significantly upregulated by omega-3 supplementation. The MDA level in the prenatal lead exposure group was markedly elevated compared with the control group, which was significantly reduced by omega-3. Omega-3 restored anti-oxidants SOD, GSH and CAT to control levels after prenatal lead exposure. Omega-3 significantly upregulated Nrf2 nuclear expression and HO-1 expression after prenatal lead exposure. Overall, omega-3 supplementation significantly elevated the BDNF/TrkB/CREB pathway and restores anti-oxidants by upregulating the Nrf2/HO-1, thereby improving cognitive function in offspring after prenatal lead exposure.

Cognitive Dysfunction , Fatty Acids, Omega-3 , Animals , Antioxidants/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/chemically induced , Cyclic AMP Response Element-Binding Protein/genetics , Dietary Supplements , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/toxicity , Female , Hippocampus/metabolism , Lead/toxicity , Maze Learning , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pregnancy , RNA, Messenger/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism , Receptor, trkB/pharmacology , Signal Transduction , Superoxide Dismutase/metabolism
Nan Fang Yi Ke Da Xue Xue Bao ; 42(4): 518-527, 2022 Apr 20.
Article Zh | MEDLINE | ID: mdl-35527487

OBJECTIVE: To explore the mechanism underlying the hepatoprotective effect of dihydromyricetin (DMY) against lipid accumulation in light of the lipophagy pathway and the inhibitory effect of DMY on HepG2 cell proliferation. METHODS: LO2 cells were cultured in the presence of 10% FBS for 24 h and treated with 100 µg/mL DMY, or exposed to 50% FBS for 24 h followed by treatment with 50, 100, or 200 µg/mL DMY; the cells in recovery group were cultured in 50% FBS for 24 h and then in 10% FBS for another 24 h. Oil red O staining was used to observe the accumulation of lipid droplets in the cells, and the levels of TC, TG, and LDL and activities of AST, ALT and LDH were measured. The expression of LC3 protein was detected using Western blotting. AO staining and transmission electron microscopy were used to determine the numbers of autophagolysosomes and autophagosomes, respectively. The formation of autophagosomes was observed with MDC staining, and the mRNA expression levels of LC3, ATG7, AMPK, mTOR, p62 and Beclin1 were determined with q-PCR. Flow cytometry was performed to analyze the effect of 50, 100, and 200 µg/mL DMY on cell cycle and apoptosis of HepG2 cells; DNA integrity in the treated cells was examined with cell DNA fragmentation test. RESULTS: DMY treatment and pretreatment obviously inhibited lipid accumulation and reduced the levels of TC, TG, LDL and enzyme activities of AST, ALT and LDH in LO2 cells (P < 0.05). In routinely cultured LO2 cells, DMY significantly promoted the formation of autophagosomes and autophagolysosomes and upregulated the expression of LC3 protein. DMY obviously attenuated high FBS-induced inhibition of autophagosome formation in LO2 cells, up- regulated the mRNA levels of LC3, ATG7, Beclin1 and AMPK, and downregulated p62 and mTOR mRNA levels (P < 0.05 or 0.01). In HepG2 cells, DMY caused obvious cell cycle arrest, inhibited cell proliferation, and induced late apoptosis and DNA fragmentation. CONCLUSION: DMY reduces lipid accumulation in LO2 cells by regulating the AMPK/ mTOR-mediated lipophagy pathway and inhibits the proliferation of HepG2 by causing cell cycle arrest and promoting apoptosis.

AMP-Activated Protein Kinases , Signal Transduction , AMP-Activated Protein Kinases/metabolism , Autophagy , Beclin-1 , Cell Proliferation , Flavonols , Hep G2 Cells , Humans , Lipids , RNA, Messenger , TOR Serine-Threonine Kinases/metabolism
Allergol Immunopathol (Madr) ; 50(3): 71-76, 2022.
Article En | MEDLINE | ID: mdl-35527658

BACKGROUND: Acute lung injury (ALI) is a clinical syndrome characterized by hyperosmotic pulmonary edema and increased alveolar fluid. Phospholipase C epsilon-1 (PLCE1), identified as a member of phospholipase family, and the relationship between PLCE1 and lung injury is not clear. OBJECTIVE: To assess the possible role of Phospholipase C Epsilon 1 (PLCE1) in Acute lung injury (ALI) progression and related mechanisms. MATERIALS AND METHODS: The effects of LPS and PLCE1 on cell viability and apoptosis were examined by MTT and flow cytometry. Also, the level of PLCE1 was controlled by transfection of its plasmid and shRNA. The inflammatory response in response to PLCE1 overexpression or ablation was analyzed by quantitative PCR and ELISA assay. And the involvement of PKC and NF-κB signal pathway were detected by Immunoblot. RESULTS: In this study, we developed a LPS-induced ALI cell model. We found PLCE1 was upregulated in LPS-induced pneumonia cells and affected cell viability. Also, knockdown of PLCE1 reduced LPS-induced apoptosis of pneumonia cells. In addition, depletion of PLCE1 suppressed LPS-induced secretion of proinflammatory cytokines in pneumonia cells. Mechanically, we found depletion of PLCE1 inhibited PKC and NF-κB signal pathway, and therefore alleviated LPS-induced ALI. CONCLUSION: We therefore thought PLCE1 could serve as a promising drug for ALI.

Acute Lung Injury , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Humans , Lipopolysaccharides/adverse effects , Lung/metabolism , NF-kappa B/metabolism , Phosphoinositide Phospholipase C , Signal Transduction
Allergol Immunopathol (Madr) ; 50(3): 85-92, 2022.
Article En | MEDLINE | ID: mdl-35527660

OBJECTIVE: This study investigated the role of dexmedetomidine (DEX) in dextran sulfate sodium (DSS)-induced NCM460 cells. MATERIAL AND METHODS: The viability and apoptosis of NCM460 cells treated with DEX with or without DSS were detected by CCK-8 and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay. The level of inflammatory factors and expression of inflammation-related proteins, tight junction proteins and Ras homolog gene family, member A/Rho-associated coiled-coil containing protein kinase (RhoA/ROCK) signaling-related proteins in NCM460 cells treated with DEX and/or U46619 (RhoA/ROCK agonist) and/or DSS were detected by the respective enzyme-linked immunosorbent assay (ELISA) kits and Western blot analysis. The permeability of NCM460 monolayers was examined with transepithelial electrical resistance (TEER) assay. RESULTS: DEX had no effect on NCM460 cell viability. However, DEX improved the viability and barrier damage and suppressed the apoptosis and inflammation of DSS-induced NCM460 cells. Correspondingly, the expression of inflammation-related proteins was reduced and the expression of tight junction proteins was increased in DSS-induced NCM460 cells after treatment with DEX. In addition, RhoA/ROCK signaling was activated in NCM460 cells induced by DSS, which was suppressed by DEX. The protective effects of DEX on DSS-indued NCM460 cells were reversed by U46619. CONCLUSION: DEX improved viability and barrier damage while suppressed apoptosis and inflammation in DSS-indued NCM460 cells by inhibiting RhoA/ROCK signaling pathway.

Dexmedetomidine , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Dextran Sulfate/pharmacology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Signal Transduction , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/pharmacology , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/pharmacology