Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 773: 136494, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35114333

RESUMEN

The ability to sense pain signals is closely linked to the activity of ion channels expressed in nociceptors, the first neurons that transduce noxious stimuli into pain. Among these ion channels, TREK1, TREK2 and TRAAK from the TREK subfamily of the Two-Pore-Domain potassium (K2P) channels, are hyperpolarizing channels that render neurons hypoexcitable. They are regulated by diverse physical and chemical stimuli as well as neurotransmitters through G-protein coupled receptor activation. Here, we review the molecular mechanisms underlying these regulations and their functional relevance in pain and migraine induction.


Asunto(s)
Trastornos Migrañosos , Canales de Potasio de Dominio Poro en Tándem , Humanos , Dolor , Percepción del Dolor , Potasio
2.
iScience ; 24(9): 102961, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34458705

RESUMEN

Activation and sensitization of trigeminal ganglia (TG) sensory neurons, leading to the release of pro-inflammatory peptides such as calcitonin gene-related peptide (CGRP), are likely a key component in migraine-related headache induction. Reducing TG neuron excitability represents therefore an attractive alternative strategy to relieve migraine pain. Here by using pharmacology and genetic invalidation ex vivo and in vivo, we demonstrate that activating TREK1 and TREK2 two-pore-domain potassium (K2P) channels inhibits TG neuronal firing sufficiently to fully reverse the migraine-like phenotype induced by NO-donors in rodents. Finally, targeting TREK is as efficient as treatment with CGRP antagonists, which represents one of the most effective migraine therapies. Altogether, our results demonstrate that inhibiting TG excitability by pharmacological activation of TREK channels should be considered as an alternative to the current migraine treatment.

3.
Neuroscientist ; 27(3): 268-284, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32715910

RESUMEN

Migraine is a common, disabling neurological disorder with a genetic, environmental, and hormonal component with an annual prevalence estimated at ~15%. It is characterized by attacks of severe, usually unilateral and throbbing headache, and can be accompanied by nausea, vomiting, and photophobia. Migraine is clinically divided into two main subtypes: migraine with aura, when it is preceded by transient neurological disturbances due to cortical spreading depression (CSD), and migraine without aura. Activation and sensitization of trigeminal sensory neurons, leading to the release of pro-inflammatory peptides, is likely a key component in headache pain initiation and transmission in migraine. In the present review, we will focus on the function of two-pore-domain potassium (K2P) channels, which control trigeminal sensory neuron excitability and their potential interest for developing new drugs to treat migraine.


Asunto(s)
Depresión de Propagación Cortical , Trastornos Migrañosos , Humanos , Dolor , Canales de Potasio
4.
Cell ; 184(2): 534-544.e11, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33373586

RESUMEN

Determination of what is the specificity of subunits composing a protein complex is essential when studying gene variants on human pathophysiology. The pore-forming α-subunit KCNQ1, which belongs to the voltage-gated ion channel superfamily, associates to its ß-auxiliary subunit KCNE1 to generate the slow cardiac potassium IKs current, whose dysfunction leads to cardiac arrhythmia. Using pharmacology, gene invalidation, and single-molecule fluorescence assays, we found that KCNE1 fulfils all criteria of a bona fide auxiliary subunit of the TMEM16A chloride channel, which belongs to the anoctamin superfamily. Strikingly, assembly with KCNE1 switches TMEM16A from a calcium-dependent to a voltage-dependent ion channel. Importantly, clinically relevant inherited mutations within the TMEM16A-regulating domain of KCNE1 abolish the TMEM16A modulation, suggesting that the TMEM16A-KCNE1 current may contribute to inherited pathologies. Altogether, these findings challenge the dogma of the specificity of auxiliary subunits regarding protein complexes and questions ion channel classification.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidades de Proteína/metabolismo , Animales , Anoctamina-1/metabolismo , Calcio/metabolismo , Canales de Cloruro/metabolismo , Células HEK293 , Humanos , Túbulos Renales Proximales/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Péptidos/metabolismo , Polimorfismo Genético , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Unión Proteica , Dominios Proteicos , Sistema Renina-Angiotensina
5.
Neuron ; 104(5): 831-833, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31805261

RESUMEN

In this issue of Neuron, Kanda et al. (2019) find that the two-pore domain potassium channels TRAAK and TREK1 drive axonal action potential repolarization for high-speed and high-frequency nervous impulses in mammalian myelinated nerves.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Nódulos de Ranvier , Potenciales de Acción , Animales , Axones
6.
Biol Aujourdhui ; 213(1-2): 51-57, 2019.
Artículo en Francés | MEDLINE | ID: mdl-31274103

RESUMEN

Migraine is a common, disabling neurological disorder with genetic, environmental and hormonal components and a prevalence estimated at ∼15%. Migraine episodes are notably related, among several factors, to electric hyperexcitability in sensory neurons. Their electrical activity is controlled by ion channels that generate current, specifically by the two-pore-domain potassium, K2P, channels, which inhibit electrical activity. Mutation in the gene encoding TRESK, a K2P channel, causes the formation of TRESK-MT1, the expected non-functional C-terminal truncated TRESK channel, and an additional unexpected protein, TRESK-MT2, which corresponds to a non-functional N-terminal truncated TRESK channel, through a mechanism called frameshift mutation-induced Alternative Translation Initiation (fsATI). TRESK-MT1 is inactive but TRESK-M2 targets two other ion channels, TREK1 and TREK2, inducing a great stimulation of the neuronal electrical activity that may cause migraines. These findings identify TREK1 and TREK2 as potential molecular targets for migraine treatment and suggest that fsATI should be considered as a distinct class of mutations.


Asunto(s)
Trastornos Migrañosos/genética , Canales de Potasio/genética , Animales , Humanos , Trastornos Migrañosos/metabolismo , Canales de Potasio/química , Canales de Potasio/clasificación , Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Multimerización de Proteína/fisiología , Transducción de Señal/genética
7.
Neuron ; 101(2): 232-245.e6, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30573346

RESUMEN

It is often unclear why some genetic mutations to a given gene contribute to neurological disorders and others do not. For instance, two mutations have previously been found to produce a dominant negative for TRESK, a two-pore-domain K+ channel implicated in migraine: TRESK-MT, a 2-bp frameshift mutation, and TRESK-C110R. Both mutants inhibit TRESK, but only TRESK-MT increases sensory neuron excitability and is linked to migraine. Here, we identify a new mechanism, termed frameshift mutation-induced alternative translation initiation (fsATI), that may explain why only TRESK-MT is associated with migraine. fsATI leads to the production of a second protein fragment, TRESK-MT2, which co-assembles with and inhibits TREK1 and TREK2, two other two-pore-domain K+ channels, to increase trigeminal sensory neuron excitability, leading to a migraine-like phenotype in rodents. These findings identify TREK1 and TREK2 as potential molecular targets in migraine and suggest that fsATI should be considered as a distinct class of mutations.


Asunto(s)
Potenciales de Acción/genética , Trastornos Migrañosos/patología , Mutación/genética , Neuronas/fisiología , Canales de Potasio de Dominio Poro en Tándem/genética , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Expresión Génica/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/genética , Trastornos Migrañosos/fisiopatología , Modelos Biológicos , Modelos Moleculares , Neurotransmisores/toxicidad , Óxido Nítrico/toxicidad , Oocitos , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ratas , Ratas Sprague-Dawley , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA