Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Seizure ; 116: 51-64, 2024 Mar.
Article En | MEDLINE | ID: mdl-37353388

PURPOSE: In Developmental and Epileptic Encephalopathies (DEEs), identifying the precise genetic factors guides the clinicians to apply the most appropriate treatment for the patient. Due to high locus heterogeneity, WES analysis is a promising approach for the genetic diagnosis of DEE. Therefore, the aim of the present study is to evaluate the utility of WES in the diagnosis and treatment of DEE patients. METHODS: The exome data of 29 DEE patients were filtrated for destructive and missense mutations in 1896 epilepsy-related genes to detect the causative variants and examine the genotype-phenotype correlations. We performed Sanger sequencing with the available DNA samples to follow the co-segregation of the variants with the disease phenotype in the families. Also, the structural effects of p.Asn1053Ser, p.Pro120Ser and p.Glu1868Gly mutations on KCNMA1, NPC2, and SCN2A proteins, respectively, were evaluated by molecular dynamics (MD) and molecular docking simulations. RESULTS: Out of 29, nine patients (31%) harbor pathological (P) or likely pathological (LP) mutations in SCN2A, KCNQ2, ATP1A2, KCNMA1, and MECP2 genes, and three patients have VUS variants (10%) in SCN1A and SCN2A genes. Sanger sequencing results indicated that three of the patients have de novo mutations while eight of them carry paternally and/or maternally inherited causative variants. MD and molecular docking simulations supported the destructive effects of the mutations on KCNMA1, NPC2, and SCN2A protein structures. CONCLUSION: Herein we demonstrated the effectiveness of WES for DEE with high locus heterogeneity. Identification of the genetic etiology guided the clinicians to adjust the proper treatment for the patients.


Epilepsy, Generalized , Epilepsy , Humans , Exome/genetics , Molecular Docking Simulation , Epilepsy/genetics , Epilepsy/diagnosis , Epilepsy, Generalized/genetics , Mutation/genetics , Phenotype
2.
Seizure ; 116: 126-132, 2024 Mar.
Article En | MEDLINE | ID: mdl-37977948

PURPOSE: Developmental and Epileptic Encephalopathies (DEEs) are rare neurological disorders characterized by early-onset medically resistant epileptic seizures, structural brain malformations, and severe developmental delays. These disorders can arise from mutations in genes involved in vital metabolic pathways, including those within the brain. Recent studies have implicated defects in the mitochondrial malate aspartate shuttle (MAS) as potential contributors to the clinical manifestation of infantile epileptic encephalopathy. Although rare, mutations in MDH1, MDH2, AGC1, or GOT2 genes have been reported in patients exhibiting neurological symptoms such as global developmental delay, epilepsy, and progressive microcephaly. METHOD: In this study, we employed exome data analysis of a patient diagnosed with DEE, focusing on the screening of 1896 epilepsy-related genes listed in the HPO and ClinVar databases. Sanger sequencing was subsequently conducted to validate and assess the inheritance pattern of the identified variants within the family. The evolutionary conservation scores of the mutated residues were evaluated using the ConSurf Database. Furthermore, the impacts of the causative variations on protein stability were analyzed through I-Mutant and MuPro bioinformatic tools. Structural comparisons between wild-type and mutant proteins were performed using PyMOL, and the physicochemical effects of the mutations were assessed using Project Hope. RESULTS: Exome data analysis unveiled the presence of novel compound heterozygous mutations in the GOT2 gene coding for mitochondrial glutamate aspartate transaminase. Sanger sequencing confirmed the paternal inheritance of the p.Asp257Asn mutation and the maternal inheritance of the p.Arg262Cys mutation. The affected individual exhibited plasma metabolic disturbances, including hyperhomocysteinemia, hyperlactatemia, and reduced levels of methionine and arginine. Detailed bioinformatic analysis indicated that the mutations were located within evolutionarily conserved domains of the enzyme, resulting in disruptions to protein stability and structure. CONCLUSION: Herein, we describe a case with DEE82 (MIM: # 618721) with pathologic novel biallelic mutations in the GOT2 gene. Early genetic diagnosis of metabolic epilepsies is crucial for long-term neurodevelopmental improvements and seizure control as targeted treatments can be administered based on the affected metabolic pathways.


Brain Diseases , Epilepsy, Generalized , Epilepsy , Humans , Brain Diseases/genetics , Epilepsy/genetics , Mutation/genetics , Seizures
3.
Brain ; 145(5): 1684-1697, 2022 06 03.
Article En | MEDLINE | ID: mdl-34788397

FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy. Functional studies in Drosophila were performed using three different mutant alleles of the Drosophila homologue of FZR1 fzr. All three individuals carrying de novo variants in FZR1 had childhood-onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the developmental and epileptic encephalopathy subtype myoclonic atonic epilepsy. We provide genetic-association testing using two independent statistical tests to support FZR1 association with developmental and epileptic encephalopathies. Further, we provide functional evidence that the missense variants are loss-of-function alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homologue fzr and overexpression studies, we show that patient variants can affect proper neurodevelopment. With the recent report of a patient with neonatal-onset with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and developmental and epileptic encephalopathy and expands the associated phenotype. We conclude that heterozygous loss-of-function of FZR1 leads to developmental and epileptic encephalopathies associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed myoclonic atonic epilepsy or developmental and epileptic encephalopathy cases.


Cdh1 Proteins , Epilepsy, Generalized , Epilepsy , Microcephaly , Ataxia , Cdh1 Proteins/genetics , Child , Epilepsy/genetics , Epilepsy, Generalized/genetics , Humans , Loss of Function Mutation , Microcephaly/genetics , Phenotype
4.
Epilepsia Open ; 4(3): 498-503, 2019 Sep.
Article En | MEDLINE | ID: mdl-31440732

SCN4A gene mutations cause a number of neuromuscular phenotypes including myotonia. A subset of infants with myotonia-causing mutations experience severe life-threatening episodic laryngospasm with apnea. We have recently identified similar SCN4A mutations in association with sudden infant death syndrome. Laryngospasm has also been proposed as a contributory mechanism to some cases of sudden unexpected death in epilepsy (SUDEP). We report an infant with EEG-confirmed seizures and recurrent apneas. Whole-exome sequencing identified a known pathogenic mutation in the SCN4A gene that has been reported in several unrelated families with myotonic disorder. We propose that the SCN4A mutation contributed to the apneas in our case, irrespective of the underlying cause of the epilepsy. We suggest this supports the notion that laryngospasm may contribute to some cases of SUDEP, and implicates a possible shared mechanism between a proportion of sudden infant deaths and sudden unexpected deaths in epilepsy.

5.
Brain ; 140(9): 2337-2354, 2017 Sep 01.
Article En | MEDLINE | ID: mdl-29050392

Recently, de novo mutations in the gene KCNA2, causing either a dominant-negative loss-of-function or a gain-of-function of the voltage-gated K+ channel Kv1.2, were described to cause a new molecular entity within the epileptic encephalopathies. Here, we report a cohort of 23 patients (eight previously described) with epileptic encephalopathy carrying either novel or known KCNA2 mutations, with the aim to detail the clinical phenotype associated with each of them, to characterize the functional effects of the newly identified mutations, and to assess genotype-phenotype associations. We identified five novel and confirmed six known mutations, three of which recurred in three, five and seven patients, respectively. Ten mutations were missense and one was a truncation mutation; de novo occurrence could be shown in 20 patients. Functional studies using a Xenopus oocyte two-microelectrode voltage clamp system revealed mutations with only loss-of-function effects (mostly dominant-negative current amplitude reduction) in eight patients or only gain-of-function effects (hyperpolarizing shift of voltage-dependent activation, increased amplitude) in nine patients. In six patients, the gain-of-function was diminished by an additional loss-of-function (gain-and loss-of-function) due to a hyperpolarizing shift of voltage-dependent activation combined with either decreased amplitudes or an additional hyperpolarizing shift of the inactivation curve. These electrophysiological findings correlated with distinct phenotypic features. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes, occasionally with neonatal onset epilepsy and developmental impairment, as well as generalized and focal seizures and EEG abnormalities for patients with gain- and loss-of-function mutations. Our study thus indicates well represented genotype-phenotype associations between three subgroups of patients with KCNA2 encephalopathy according to the electrophysiological features of the mutations.


Brain Diseases/diagnosis , Brain Diseases/genetics , Epilepsy/diagnosis , Kv1.2 Potassium Channel/genetics , Animals , Brain Diseases/complications , Epilepsy/complications , Epilepsy/genetics , Genetic Association Studies , Mutation , Oocytes/physiology , Phenotype , Xenopus
6.
Mol Genet Genomic Med ; 4(4): 457-64, 2016 Jul.
Article En | MEDLINE | ID: mdl-27465585

BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. METHODS: We sent out a survey to 16 genetic centers performing SCN1A testing. RESULTS: We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. CONCLUSION: We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

7.
Nat Genet ; 47(4): 393-399, 2015 Apr.
Article En | MEDLINE | ID: mdl-25751627

Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons.


Epilepsy/genetics , Kv1.2 Potassium Channel/genetics , Mutation , Spasms, Infantile/genetics , Adult , Amino Acid Sequence , Child , Child, Preschool , Cohort Studies , Female , Genetic Predisposition to Disease , Humans , Infant , Male , Pedigree , Young Adult
8.
Am J Hum Genet ; 93(5): 967-75, 2013 Nov 07.
Article En | MEDLINE | ID: mdl-24207121

Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures.


DNA-Binding Proteins/genetics , Epilepsies, Myoclonic/genetics , Animals , Child , Cognition Disorders/genetics , Cognition Disorders/pathology , Cohort Studies , Epilepsies, Myoclonic/pathology , Exome , Female , Gene Knockdown Techniques , Haploinsufficiency , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Larva/genetics , Male , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype , Seizures, Febrile/genetics , Seizures, Febrile/pathology , Young Adult , Zebrafish
...