Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 976: 176661, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795753

RESUMEN

Alzheimer's disease (AD), marked by tau tangles and amyloid-beta plaques, leads to cognitive decline. Despite extensive research, its complex etiology remains elusive, necessitating new treatments. This study utilized machine learning (ML) to analyze compounds with neuroprotective potential. This approach exposed the disease's complexity and identified important proteins, namely MTOR and BCL2, as central to the pathogenic network of AD. MTOR regulates neuronal autophagy and survival, whereas BCL2 regulates apoptosis, both of which are disrupted in AD. The identified compounds, including Armepavine, Oprea1_264702,1-cyclopropyl-7-fluoro-8-methoxy-4-oxoquinoline-3-carboxylic acid,(2S)-4'-Hydroxy-5,7,3'-trimethoxyflavan,Oprea1_130514,Sativanone,5-hydroxy-7,8-dimethoxyflavanone,7,4'-Dihydroxy-8,3'-dimethoxyflavanone,N,1-dicyclopropyl-6,Difluoro-Methoxy-Gatifloxacin,6,8-difluoro-1-(2-fluoroethyl),1-ethyl-6-fluoro-7-(4-methylpiperidin-1-yl),Avicenol C, demonstrated potential modulatory effects on these proteins. The potential for synergistic effects of these drugs in treating AD has been revealed via network pharmacology. By targeting numerous proteins at once, these chemicals may provide a more comprehensive therapeutic approach, addressing many aspects of AD's complex pathophysiology. A Molecular docking, dynamic simulation, and Principle Component Analysis have confirmed these drugs' efficacy by establishing substantial binding affinities and interactions with important proteins such as MTOR and BCL2. This evidence implies that various compounds may interact within the AD pathological framework, providing a sophisticated and multifaceted therapy strategy. In conclusion, our study establishes a solid foundation for the use of these drugs in AD therapy. Thus current study highlights the possibility of multi-targeted, synergistic therapeutic approaches in addressing the complex pathophysiology of AD by integrating machine learning, network pharmacology, and molecular docking simulations. This holistic technique not only advances drug development but also opens up new avenues for developing more effective treatments for this difficult and widespread disease.


Asunto(s)
Enfermedad de Alzheimer , Descubrimiento de Drogas , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Farmacología en Red , Serina-Treonina Quinasas TOR , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Descubrimiento de Drogas/métodos , Serina-Treonina Quinasas TOR/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores
2.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486457

RESUMEN

The Japanese encephalitis virus, (JEV), is a flavivirus mostly transmitted by Culex mosquitoes mostly present in Southeast Asia and the Western Pacific region. Ardeid-wading birds are the natural reservoir of JEV; nonetheless, pigs are frequently a key amplifying host during epidemics in human populations. Although more domestic animals and wildlife are JEV hosts, it is unclear how these animals fit into the ecology and epidemiology of the virus. Even though there is no specific therapy, vaccines are available to prevent this infection. However, current vaccinations do not work against every clinical isolate and can cause neurological problems in certain people. In this study, we have screened 501 phytochemical compounds from various plants from the Zingeberaceae family against the RdRp protein of JEV. Based on this, the top five compounds (IMPHY014466, IMPHY004928, IMPHY007097, IMPHY014179 and IMPHY005010) were selected based on the obtained docking scores, which was above -8.0 Kcal/mol. Further, the binding affinity of these selected ligands was also analysed using molecular interaction, and the presence of interactions like hydrogen bonds, hydrophobic bonds and polar bonds with respective active residues were identified and studied elaborately. Furthermore, the dynamic stability of the docked RdRp protein with these selected phytochemicals was studied using Molecular dynamic simulation and essential dynamics. The free energy landscape analysis also provided information about the energy transition responsible stability of the complex. The results obtained advocated phytochemical compounds from the zingeberaceae family for future experimental validation, as these compounds exhibited significant potential as JEV antagonists.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407246

RESUMEN

One of the viral diseases that affect millions of people around the world, particularly in developing countries, is Japanese encephalitis (JE). In this study, the conserved protein of this virus, that is, non-structural protein 5 (NS5), was used as a target protein for this study, and a compound library of 749 antiviral molecules was screened against NS5. The current study employed machine learning-based virtual screening combined with molecular docking. Here, three hits (24360, 123519051 and 213039) had lower binding energies (< -8 kcal/mol) than the control, S-Adenosyl-L-homocysteine (SAH). All the compounds showed significant H-bond interactions with functional residues, which were also observed by the control. Molecular dynamics simulation, MM/GBSA for binding free energy analysis, principal component analysis and free energy landscape were also performed to study the stability of the complex formation. All three compounds had similar root mean square deviation trends, which were comparable to the control, SAH. Post-MD, the 123519051-receptor complex had the highest number of H-bonds (4 to 5) after the control, out of which three exhibited the highest percentage occupancy (50%, 24% and 79%). Both docking and MD, 123519051 showed an H-bond with the residue Gly111, which was also found for the control-protein complex. 123519051 showed the lowest binding free energy with ΔGbind of -89 kJ/mol. Steered molecular dynamics depicted that 123519051 had the maximum magnitude of dissociation (1436.43 kJ/mol/nm), which was more than the control, validating its stable complex formation. This study concluded that 123519051 is a binder and could inhibit the protein NS5 of JE.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38197579

RESUMEN

The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38213287

RESUMEN

The trypanothione reductase enzyme, which neutralizes the reactive oxygen species produced inside the macrophages to kill the parasites, is one of the evasion strategies Leishmania uses to survive inside the cells. The vitality of the parasite depends on Leishmania major trypanothione reductase (LmTr), a NADPH-dependent flavoprotein oxidoreductase essential for thiol metabolism. Since this enzyme is distinct and lacking in humans, we focused on it in our study to screen for new inhibitors to combat leishmaniasis. Using the I-TASSER server, a three-dimensional model of LmTr was generated. The Autodock vina program was used in high-throughput virtual screening of the ZINC database. The top seven molecules were ranked according to their binding affinity. The compounds with the highest binding affinities and the right number of hydrogen bonds were chosen. These compounds may be effective at inhibiting the target enzyme's (LmTr) activity, making them new leishmaniasis treatments. These compounds may serve as a useful starting point for a hit-to-lead approach in the quest for new anti-Leishmania drugs that are more efficient and less cytotoxic. The average node degree is 5.09, the average local clustering coefficient is 0.868, and the PPI enrichment p-value is 8.9e-06, indicating that it is sufficiently connected to regulate the network. TRYR (LmTr protein) also interacts physically with ten additional proteins in the pathogenesis network. The findings of the study indicated that successfully suppressing the LmTr protein in vitro and in vivo may finally result in regulating the L. major pathogenesis.Communicated by Ramaswamy H. Sarma.

6.
Chem Biol Interact ; 368: 110223, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283466

RESUMEN

Synbiotics, are a combination of probiotics and prebiotics. They play an important role in metabolizing different nutritional substrates and thus helps in the maintenance of human health. Any disbalance in the gut microflora, known as dysbiosis, is known to lead to a number of diseased conditions. It can be reverted by the administration of synbiotics. Present review highlights various mechanistic pathways through which synbiotics act as therapeutics. The dual role of synbiotics as nutraceutical and excipient in developing oral formulations are entailed with case studies. The findings entailed that there exist numerous studies on prebiotics as well as probiotics have been carried out to show their effects in several diseases. However, the concept of combining together them for prevention and treatment of various pathological conditions accruing from dysbiosis is relatively new. Synbiotics, however, face challenge of low stability during their sojourn in the GIT, which is generally overcome by various encapsulation techniques. Various studies also showed potential role of synbiotics in drug delivery. However, it is an emerging area and lacks clinical correlation. It is important to focus on clinical trials of formulations wherein synbiotics have been used as therapeutic moiety as well as pharmaceutical carrier for treating various diseases.


Asunto(s)
Probióticos , Simbióticos , Humanos , Prebióticos , Disbiosis , Excipientes , Probióticos/farmacología , Probióticos/uso terapéutico
7.
Life (Basel) ; 12(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35888080

RESUMEN

Camel milk (CM) constitutes an important dietary source in the hot and arid regions of the world. CM is a colloidal mixture of nutritional components (proteins, carbohydrates, lipids, vitamins, and minerals) and non-nutritional components (hormones, growth factors, cytokines, immunoglobulins, and exosomes). Although the majority of previous research has been focused on the nutritional components of CM; there has been immense interest in the non-nutritional components in the recent past. Reckoning with these, in this review, we have provided a glimpse of the recent trends in CM research endeavors and attempted to provide our perspective on the therapeutic efficacy of the nutritional and non-nutritional components of CM. Interestingly, with concerted efforts from the research fraternities, convincing evidence for the better understanding of the claimed traditional health benefits of CM can be foreseen with great enthusiasm and is indeed eagerly anticipated.

8.
Vaccines (Basel) ; 10(6)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35746494

RESUMEN

Enterobacter cloacae (EC) is a significant emerging pathogen that is occasionally associated with lung infection, surgical site infection, urinary infection, sepsis, and outbreaks in neonatal intensive care units. In light of the fact that there is currently no approved vaccine or therapeutic option for the treatment of EC, the current study was developed to concentrate on applications based on modern computational approaches to design a multi-epitope-based E. cloacae peptide vaccine (MEBEPV) expressing the antigenic determinants prioritized from the EC genome. Integrated computational analyses identified two potential protein targets (phosphoporin protein-PhoE and putative outer-membrane porin protein) for further exploration on the basis of pangenome subtractive proteomics and immunoinformatic in-depth examination of the core proteomes. Then, a multi-epitope peptide vaccine was designed, which comprised shortlisted epitopes that were capable of eliciting both innate and adaptive immunity, as well as the cholera toxin's B-subunit, which was used as an adjuvant in the vaccine formulation. To ensure maximum expression, the vaccine's 3D structure was developed and the loop was refined, improving the stability by disulfide engineering, and the physicochemical characteristics of the recombinant vaccine sequence were found to be ideal for both in vitro and in vivo experimentation. Blind docking was then used for the prediction of the MEBEPV predominant blinding mode with MHCI, MHCII, and TLR3 innate immune receptors, with lowest global energy of -18.64 kJ/mol, -48.25 kJ/mol, and -5.20 kJ/mol for MHC-I, MHC-II, and TLR-4, respectively, with docked complexes considered for simulation. In MD and MMGBSA investigations, the docked models of MEBEPV-TLR3, MEBEPV-MHCI, and MEBEPV-MHCII were found to be stable during the course of the simulation. MM-GBSA analysis calculated -122.17 total net binding free energies for the TLR3-vaccine complex, -125.4 for the MHC I-vaccine complex, and -187.94 for the MHC II-vaccine complex. Next, MM-PBSA analysis calculated -115.63 binding free energy for the TLR3-vaccine complex, -118.19 for the MHC I-vaccine complex, and -184.61 for the MHC II-vaccine complex. When the vaccine was tested in silico, researchers discovered that it was capable of inducing both types of immune responses (cell mediated and humoral) at the same time. Even though the suggested MEBEPV has the potential to be a powerful contender against E. cloacae-associated illnesses, further testing in the laboratory will be required before it can be declared safe and immunogenic.

9.
Chem Biol Interact ; 361: 109960, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533733

RESUMEN

In recent years, unique physicochemical properties of amphiphilic block copolymers have been utilized to design the polymeric micelles for brain-specific delivery of drugs, proteins, peptides and genes. Their unique properties such as nano-size, charge-switching ability, stimuli-responsive cargo release, flexible structure, and self-assembly enable them to overcome limitations of conventional dosage forms that include rapid drug release, drug efflux, and poor brain bioavailability, and poor stability. These limitations hinder their therapeutic efficacy in treating brain diseases. Their ease of functionalization and enhanced penetration and retention effect make them suitable nanocarriers for the diagnosis of various brain diseases. In this context, the present manuscript provides an insight into the progress made in the functionalization of micelles such as the incorporation of stimuli-sensitive moieties in copolymers, conjugation of cargo molecules with the core-forming block via responsive smart linkers, and conjugation of active ligands and imaging moieties with the corona forming block for brain targeting and imaging. Further, the review also expounds on the role of polymeric micelles in delivering neurotherapeutic to the brain. Some patents related to polymeric micelles formulated for brain delivery are also enlisted.


Asunto(s)
Encefalopatías , Micelas , Encéfalo , Encefalopatías/tratamiento farmacológico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Polímeros/química
10.
Clin Nutr ; 41(6): 1228-1235, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35504165

RESUMEN

BACKGROUND & AIMS: The aim of this study was to determine the effect of krill oil supplementation, on muscle function and size in healthy older adults. METHODS: Men and women, aged above 65 years, with a BMI less than 35kg/m2, who participated in less than 1h per week of structured self-reported exercise, were enrolled in the study (NCT04048096) between March 2018 and March 2020. Participants were randomised to either control or krill oil supplements (4g/day) for 6 months in this double blind randomised controlled trial. At baseline, 6 weeks and 6 months, knee extensor maximal torque was measured as the primary outcome of the study. Secondary outcomes measured were grip strength, vastus lateralis muscle thickness, short performance physical battery test, body fat, muscle mass, blood lipids, glucose, insulin, and C-Reactive Protein, neuromuscular (M-Wave, RMS and voluntary activation), and erythrocyte fatty acid composition. RESULTS: A total of 102 men and women were enrolled in the study. Ninety-four participants (krill group (26 women and 23 men) and placebo group (27 women and 18 men)) completed the study (mean (SD): age 71.2 (5.1) years and weight 71.8 (12.3) kg). Six months supplementation with krill oil resulted in, an increase in knee extensor maximal torque, grip strength and vastus lateralis muscle thickness, relative to control (p<0.05). The 6-month treatment effects were 9.3% (95%CI: 2.8, 15.8%), 10.9% (95%CI: 8.3, 13.6%) and 3.5% (95%CI: 2.1, 4.9%) respectively. Increases in erythrocyte fatty acid profile were seen with krill oil for EPA 214% (95%CI: 166, 262%), DHA 36% (95%CI: 24, 48%) and the omega-3 index 61% (95%CI: 49, 73%), relative to control (p < 0.05). Krill oil resulted in an increased, relative to control (p < 0.05), M-Wave of 17% (95%CI: 12.7, 38.1%) but there was no effect of krill oil on RMS, voluntary activation, or on any other secondary outcomes such as performance of the short performance physical battery test or quality of life. CONCLUSION: Krill oil supplementation for 6 months results in statistically and clinically significant increases in muscle function and size in healthy older adults. GOV IDENTIFIER: NCT04048096.


Asunto(s)
Euphausiacea , Enfermedades Musculares , Anciano , Animales , Suplementos Dietéticos , Método Doble Ciego , Ácidos Grasos/farmacología , Femenino , Humanos , Masculino , Músculo Esquelético , Calidad de Vida
11.
Vaccines (Basel) ; 10(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632394

RESUMEN

Due to the misuse of antibiotics in our daily lives, antimicrobial resistance (AMR) has become a major health problem. Penicillin, the first antibiotic, was used in the 1930s and led to the emergence of AMR. Due to alterations in the microbe's genome and the evolution of new resistance mechanisms, antibiotics are losing efficacy against microbes. There are high rates of mortality and morbidity due to antibiotic resistance, so addressing this major health issue requires new approaches. Staphylococcus auricularis is a Gram-positive cocci and is capable of causing opportunistic infections and sepsis. S. auricularis is resistant to several antibiotics and does not currently have a licensed vaccine. In this study, we used bacterial pan-genome analysis (BPGA) to study S. auricularis pan-genome and applied a reverse immunology approach to prioritize vaccine targets against S. auricularis. A total of 15,444 core proteins were identified by BPGA analysis, which were then used to identify good vaccine candidates considering potential vaccine filters. Two vaccine candidates were evaluated for epitope prediction including the superoxide dismutase and gamma-glutamyl transferase protein. The epitope prediction phase involved the prediction of a variety of B-Cell and T-cell epitopes, and the epitopes that met certain criteria, such as antigenicity, immunogenicity, non-allergenicity, and non-toxicity were chosen. A multi-epitopes vaccine construct was then constructed from all the predicted epitopes, and a cholera toxin B-subunit adjuvant was also added to increase vaccine antigenicity. Three-dimensional models of the vaccine were used for downward analyses. Using the best-modeled structure, binding potency was tested with MHC-I, MHC-II and TLR-4 immune cells receptors, proving that the vaccine binds strongly with the receptors. Further, molecular dynamics simulations interpreted strong intermolecular binding between the vaccine and receptors and confirmed the vaccine epitopes exposed to the host immune system. The results support that the vaccine candidate may be capable of eliciting a protective immune response against S. auricularis and may be a promising candidate for experimental in vitro and in vivo studies.

12.
Infect Genet Evol ; 98: 105233, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104682

RESUMEN

Shigella flexneri is the main causative agent of the communicable diarrheal disease, shigellosis. It is estimated that about 80-165 million cases and > 1 million deaths occur every year due to this disease. S. flexneri causes dysentery mostly in young children, elderly and immunocompromised patients, all over the globe. Recently, due to the emergence of S. flexneri antibiotic resistance strains, it is a dire need to predict novel therapeutic drug targets in the bacterium and screen natural products against it, which could eliminate the curse of antibiotic resistance. Therefore, in current study, available antibiotic-resistant genomes (n = 179) of S. flexneri were downloaded from PATRIC database and a pan-genome and resistome analysis was conducted. Around 5059 genes made up the accessory, 2469 genes made up the core, and 1558 genes made up the unique genome fraction, with 44, 34, and 13 antibiotic-resistant genes in each fraction, respectively. Core genome fraction (27% of the pan-genome), which was common to all strains, was used for subtractive genomics and resulted in 384 non-homologous, and 85 druggable targets. Dihydroorotase was chosen for further analysis and docked with natural product libraries (Ayurvedic and Streptomycin compounds), while the control was orotic acid or vitamin B13 (which is a natural binder of this protein). Dynamics simulation of 50 ns was carried out to validate findings for top-scored inhibitors. The current study proposed dihydroorotase as a significant drug target in S. flexneri and 4-tritriacontanone & patupilone compounds as potent drugs against shigellosis. Further experiments are required to ascertain validity of our findings.


Asunto(s)
Antibacterianos/farmacología , Productos Biológicos/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Pirimidinas/farmacología , Shigella flexneri/enzimología , Simulación por Computador , Farmacorresistencia Bacteriana , Pirimidinas/biosíntesis , Shigella flexneri/efectos de los fármacos
13.
Biology (Basel) ; 10(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34943225

RESUMEN

Recently, a new variant, B.1620, with mutations (S477N-E484K) in the spike protein's receptor-binding domain (RBD) has been reported in Europe. In order to design therapeutic strategies suitable for B.1.620, further studies are required. A detailed investigation of the structural features and variations caused by these substitutions, that is, a molecular level investigation, is essential to uncover the role of these changes. To determine whether and how the binding affinity of ACE2-RBD is affected, we used protein-protein docking and all-atom simulation approaches. Our analysis revealed that B.1.620 binds more strongly than the wild type and alters the hydrogen bonding network. The docking score for the wild type was reported to be -122.6 +/- 0.7 kcal/mol, while for B.1.620, the docking score was -124.9 +/- 3.8 kcal/mol. A comparative binding investigation showed that the wild-type complex has 11 hydrogen bonds and one salt bridge, while the B.1.620 complex has 14 hydrogen bonds and one salt bridge, among which most of the interactions are preserved between the wild type and B.1.620. A dynamic analysis of the two complexes revealed stable dynamics, which corroborated the global stability trend, compactness, and flexibility of the three essential loops, providing a better conformational optimization opportunity and binding. Furthermore, binding free energy revealed that the wild type had a total binding energy of -51.14 kcal/mol, while for B.1.628, the total binding energy was -68.25 kcal/mol. The current findings based on protein complex modeling and bio-simulation methods revealed the atomic features of the B.1.620 variant harboring S477N and E484K mutations in the RBD and the basis for infectivity. In conclusion, the current study presents distinguishing features of B.1.620, which can be used to design structure-based drugs against the B.1.620 variant.

14.
J Inflamm Res ; 14: 6305-6316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34866928

RESUMEN

BACKGROUND: Trastuzumab is a new biological drug that has been used to treat breast and gastric cancer; however, its cardiotoxicity and hepatotoxicity limit its use. Garlic has antioxidant, anti-inflammatory, antihyperlipidemic, and anticancer effects. The present study aimed to evaluate the effects of garlic on trastuzumab-induced hepatotoxicity in a rat model. METHODS: Twenty rats were divided into four equal groups as vehicle control (G1), garlic (G2), trastuzumab (G3), and trastuzumab+garlic (G4). All rats were sacrificed after eight weeks of treatment, followed by blood collection and excision of liver tissues for further analyses. The liver specimens were processed for histopathological (HP), immunohistochemical (expression of TNF-α and PCNA), immunofluorescent expression of Chk2 and p53, biochemical, and flow cytometry investigations to evaluate the extent of hepatocyte injury. The biochemical analysis was conducted for the activity of tissue antioxidants (GPX1, CAT, and SOD2), serum lipid profile, and liver enzymes, whereas ROS was performed by flow cytometry. RESULTS: The results revealed remarkable structural changes in hepatocytes of G3 with significant increases in the numbers of inflammatory cells and positive PCNA cells, area % of collagen fibers, and immuno-expression of TNF-α, as well as a significant reduction in the nuclear expression of Chk2. In addition, significant reductions were noticed in the antioxidant enzymes (SOD2, CAT, and GPX1) activity of G3. In contrast, the levels of lipid profile tests (triglycerides, total cholesterol, LDLC, and HDLC), liver enzymes (ALT, AST, and ALP), and ROS revealed significant increases in rats of G3. Likewise, garlic administration in G4 restored all mentioned changes to their average levels deviated by trastuzumab. CONCLUSION: Based on the current results, garlic demonstrates hepatoprotective effects against trastuzumab-induced toxicity in rats. The study suggested for the first time that the coadministration of garlic with trastuzumab for treating breast or gastric cancer can augment their efficacy with minimal toxicity.

15.
Front Mol Biosci ; 8: 716735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765641

RESUMEN

V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint and is a type I transmembrane protein. VISTA is linked to immunotherapy resistance, and it is a potential immune therapeutic target, especially for triple-negative breast cancer. It expresses at a high concentration in regulatory T cells and myeloid-derived suppressor cells, and its functional blockade is found to delay tumor growth. A useful medicinal plant database for drug designing (MPD3), which is a collection of phytochemicals from diverse plant families, was employed in virtual screening against VISTA to prioritize natural inhibitors against VISTA. Three compounds, Paratocarpin K (PubChem ID: 14187087), 3-(1H-Indol-3-yl)-2-(trimethylazaniumyl)propanoate (PubChem ID: 3861164), and 2-[(5-Benzyl-4-ethyl-1,2,4-triazol-3-yl)sulfanylmethyl]-5-methyl-1,3,4-oxadiazole (PubChem ID: 6494266), having binding energies stronger than -6 kcal/mol were found to have two common hydrogen bond interactions with VISTA active site residues: Arg54 and Arg127. The dynamics of the compound-VISTA complexes were further explored to infer binding stability of the systems. Results revealed that the compound 14187087 and 6494266 systems are highly stable with an average RMSD of 1.31 Å. Further affirmation on the results was achieved by running MM-GBSA on the MD simulation trajectories, which re-ranked 14187087 as the top-binder with a net binding energy value of -33.33 kcal/mol. In conclusion, the present study successfully predicted natural compounds that have the potential to block the function of VISTA and therefore can be utilized further in experimental studies to validate their real anti-VISTA activity.

16.
Biomed Pharmacother ; 140: 111726, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34111725

RESUMEN

Bronchial asthma (BA) is a heterogeneous allergic respiratory disease with diverse inflammatory symptoms, pathology, and responses to treatment. Thyme is a natural product which is consisted of multiple phenolic compounds of therapeutic significance for treatment of cough and bronchitis. This study evaluated the efficacy of thyme oil against ovalbumin (OVA)-induced BA in an experimental rabbit model. Forty male rabbits were divided into four equal groups [control group (G1), OVA (G2), thyme oil (G3), and OVA plus thyme oil (G4)]. Animals were treated for 30 days, and clinical, histopathological (HP), histochemical (HC), immunohistochemical (IHC), morphometric, biochemical and flow cytometry methods were performed, followed by statistical analysis. All used methods revealed normal structure of the lung tissues in rabbits of G1 and G3. In contrast, the clinical examination of G2 rabbits revealed an obvious increase in the respiratory rate, sneezing and wheezing, whereas the HP, HC and IHC techniques exhibited substantial inflammatory changes in the peribronchio-vascular lung tissues with thinning, degeneration, apoptosis (using the TUNEL assay), necrosis, and shedding of the airway epithelium. Furthermore, the morphometric results confirmed significant increases in the numbers of inflammatory cells, goblet cells, eosinophils and apoptotic cells from (12, 0, 2, 2 cells) to (34,10, 16, 18 cells) respectively, as well as the area percentage of collagen fiber deposition and immunoexpression of eotaxin-1/10 high power fields. Additionally, the biochemical results revealed significant increases in the serum levels of TSLP, IL-4, IL-5, IL-9, IL-13, IgE and eotaxin-1 cytokines from (140, 40, 15, 38, 120, 100, 48) pg./ml to (360, 270, 130, 85, 365, 398, 110) pg./ml respectively, while analysis of ROS by flow cytometry revealed remarkable oxidative stress effects in G2 rabbits. On the other hand, treatment of rabbits with thyme oil in G4 substantially alleviated all OVA-induced alterations. Overall, our findings indicate for the first time that thyme oil can ameliorate OVA-induced BA via its immunomodulatory, anti-inflammatory, antiapoptotic, and antioxidant effects on the lung tissues of rabbits.


Asunto(s)
Antiasmáticos/uso terapéutico , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Asma/tratamiento farmacológico , Aceites de Plantas/uso terapéutico , Thymus (Planta) , Alérgenos , Animales , Antiasmáticos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Asma/inmunología , Asma/patología , Citocinas/sangre , Citocinas/inmunología , Células Caliciformes/efectos de los fármacos , Inmunoglobulina E/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Masculino , Ovalbúmina , Aceites de Plantas/farmacología , Conejos , Especies Reactivas de Oxígeno/inmunología , Células Th2/inmunología
17.
Artículo en Inglés | MEDLINE | ID: mdl-35010455

RESUMEN

Elizabethkingia meningoseptica is a ubiquitous Gram-negative emerging pathogen that causes hospital-acquired infection in both immunocompromised and immunocompetent patients. It is a multi-drug-resistant bacterium; therefore, an effective subunit immunogenic candidate is of great interest to encounter the pathogenesis of this pathogen. A protein-wide annotation of immunogenic targets was performed to fast-track the vaccine development against this pathogen, and structural-vaccinology-assisted epitopes were predicted. Among the total proteins, only three, A0A1T3FLU2, A0A1T3INK9, and A0A1V3U124, were shortlisted, which are the essential vaccine targets and were subjected to immune epitope mapping. The linkers EAAK, AAY, and GPGPG were used to link CTL, HTL, and B-cell epitopes and an adjuvant was also added at the N-terminal to design a multi-epitope immunogenic construct (MEIC). The computationally predicted physiochemical properties of the ensemble immunogen reported a highly antigenic nature and produced multiple interactions with immune receptors. In addition, the molecular dynamics simulation confirmed stable binding and good dynamic properties. Furthermore, the computationally modeled immune response proposed that the immunogen triggered a strong immune response after several doses at different intervals. Neutralization of the antigen was observed on the 3rd day of injection. Conclusively, the immunogenic construct produces protection against Elizabethkingia meningoseptica; however, further immunological testing is needed to unveil its real efficacy.


Asunto(s)
Infección Hospitalaria , Infecciones por Flavobacteriaceae , Biología Computacional , Epítopos de Linfocito T , Infecciones por Flavobacteriaceae/prevención & control , Humanos , Simulación del Acoplamiento Molecular , Proteómica , Desarrollo de Vacunas , Vacunas de Subunidad , Vacunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...