Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Biol Macromol ; 233: 123491, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36736985

The use of dressings is one of the most common methods for wound treatment. Since most single-layer dressings cannot mimic the hierarchical structure of the skin well, multi-layer dressings have been considered. In this study, a bilayer dressing was fabricated using a gelatin sponge layer cross-linked with sodium tripolyphosphate (Gel-STPP) and a layer of carrageenan nanofibers containing platelet-rich fibrin (Carr-PRF). Chemical interactions between the two layers were characterized by FTIR, and the microstructure was visualized by SEM. It was found that the presence of Carr-PRF nanofiber layer increased tensile strength by 12.96 % (from 0.216 ± 0.015 to 0.268 ± 0.036 MPa) and elastic modulus by 56.70 % (from 0.388 ± 0.072 to 0.608 ± 0.029 MPa) compared to Gel-STPP sponge. Gel-STPP/Carr-PRF wound dressing had a 45.76 ± 4.18 % degradability after 7 days of immersion in phosphate buffered saline (PBS). PRF-containing bilayer wound dressing was able to sustainably release growth factors over 7 days. The Carr-PRF nanofiber layer coated on Gel-STPP sponge was an ideal environment for adhesion and proliferation of L929 cells. Gel-STPP/Carr-PRF bilayer dressing outperformed the other tested samples in terms of angiogenic potential. Average wound closure was 94.21 ± 2.06 % in Gel-STPP/Carr-PRF dressing treated rats after 14 days, and based on the histopathological and immunohistochemical examinations, the Gel-STPP/Carr-PRF dressing group augmented full-thickness wound healing, keratin layer and skin appendages formation after 14 days.


Gelatin , Nanofibers , Rats , Animals , Gelatin/chemistry , Nanofibers/chemistry , Vascular Endothelial Growth Factor A , Carrageenan , Bandages
2.
Biomater Adv ; 141: 213082, 2022 Oct.
Article En | MEDLINE | ID: mdl-36067641

Platelet-rich fibrin (PRF) is extracted from the blood without biochemical interference and, also, with the ability of a long-term release of growth factors that can stimulate tissue repair and regerenation. Here, leucocyte- and platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin (A-PRF) were extracted and utilized for the creation of nanofibers containing polyacrylamide (PAAm), PAAm / L-PRF and PAAm / A-PRP through electrospinning processing technique. The effect of the type of PRF on the physical, mechanical and biological properties of the resultant nanofiberous wound dressings are thoroughly evaluated. The results presented in the current study reveals that the fiber diameter is grealtly reduced through the utilization of L-PRF. In addition, mechanical property is also positively affected by L-PRF and the degradation rate is found to be higher compared to A-PRF group. The L929 cells proliferation and adhesion, angiogenesis potential and wound healing ability was significantly higher in PAAm/A-PRF nanofibers compared to pure PAAm and PAAm/L-PRF nanofibers owed to the release of vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). Overall, the utilization of L-PRF or A-PRF can improve the physical, mechanical and biological behavior of nanofiber making them an ideal candidate for wound dressings, with the emphasis on the skin tissue repair and regeneration applications.


Nanofibers , Platelet-Rich Fibrin , Acrylic Resins , Bandages , Platelet-Derived Growth Factor/metabolism , Platelet-Rich Fibrin/metabolism , Vascular Endothelial Growth Factor A/metabolism
3.
Int J Biol Macromol ; 204: 245-257, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35131230

Despite significant advances in surgery and postoperative care, there are still challenges in the treatment of wounds. In the current study, a freeze-dried chitosan (Cs)/polyvinylpyrrolidone (PVP) sponges containing platelet-rich fibrin (PRF at 1, 1.5 and 2% w/v) for wound dressing application is fabricated and fully characterized. Addition of 1% w/v of PRF to Cs/PVP (CS/PVP/1PRF) sample significantly increased the tensile strength (from 0.147 ± 0.005 to 0.242 ± 0.001 MPa), elastic modulus (from 0.414 ± 0.014 to 0.611 ± 0.022 MPa) and strain at break (from 53.4 ± 0.9 to 61.83 ± 1.17%) compared to Cs sample, and was hence selected as the optimal sample. The antibacterial activity of Cs/PVP/1PRF sponge wound dressing against E. coli and S. aureus was confirmed to be effective. Enzyme-linked immunosorbent assays revealed that the release of both VEGF and PDGF-AB from PRF powder, as well as PDGF-AB from Cs/PVP/1PRF sample was time-independent, but the release of VEGF from Cs/PVP/1PRF sample increased significantly with time. According to MTT and CAM assays, the Cs/PVP/1PRF sample significantly increased proliferation and angiogenic potential, respectively. Furthermore, in vivo studies demonstrated a 97.16 ± 1.55% wound closure for Cs/PVP/1PRF group after 14 days.


Chitosan , Platelet-Rich Fibrin , Bandages , Chitosan/pharmacology , Escherichia coli , Povidone , Staphylococcus aureus , Wound Healing
...