Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Sci (Paris) ; 40(3): 275-282, 2024 Mar.
Artículo en Francés | MEDLINE | ID: mdl-38520103

RESUMEN

Cells can be reprogrammed into senescence to adapt to a variety of stresses, most often affecting the genome integrity. Senescent cells accumulate with age or upon various insults in almost all tissues, and contribute to the development of several age-associated pathologies. Studying the molecular pathways involved in senescence induction, maintenance, or escape is challenged by the heterogeneity in the level of commitment to senescence, and by the pollution of senescent cell populations by proliferating pre- or post-senescent cells. We coped with these difficulties by developing a protocol for sorting senescent cells by flow cytometry, based on three major senescence markers : the SA-ß-Galactosidase activity, the size of the cells, and their granularity reflecting the accumulation of aggregates, lysosomes, and altered mitochondria. We address the issues related to sorting senescent cells, the pitfalls to avoid, and propose solutions for sorting viable cells expressing senescent markers at different extents.


Title: Tri des cellules sénescentes par cytométrie en flux - Des spécificitéset des pièges à éviter. Abstract: La sénescence est un état d'adaptation des cellules au stress qui contribue au vieillissement et au développement de nombreuses maladies. Étudier les voies moléculaires modulant l'induction, le maintien ou l'échappement de la sénescence est compliqué par la contamination des populations de cellules sénescentes par des cellules proliférantes pré- ou post-sénescentes. Pour contourner cette difficulté, nous avons développé un protocole de tri par cytométrie en flux, fondé sur trois marqueurs majeurs de sénescence (l'activité SA-ß-galactosidase, la taille et la granularité des cellules), qui permet de trier des cellules sénescentes viables, à des degrés choisis d'engagement dans le phénotype.


Asunto(s)
Senescencia Celular , Lisosomas , Humanos , Senescencia Celular/genética , Citometría de Flujo
2.
Brain Behav Immun ; 117: 20-35, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38157948

RESUMEN

BACKGROUND: Cerebral malaria (CM) is a fatal neuroinflammatory syndrome caused (in humans) by the protozoa Plasmodium (P.) falciparum. Glial cell activation is one of the mechanisms that contributes to neuroinflammation in CM. RESULT: By studying a mouse model of CM (caused by P. berghei ANKA), we describe that the induction of autophagy promoted p21-dependent senescence in astrocytes and that CXCL-10 was part of the senescence-associated secretory phenotype. Furthermore, p21 expression was observed in post-mortem brain and peripheral blood samples from patients with CM. Lastly, we found that the depletion of senescent astrocytes with senolytic drugs abrogated inflammation and protected mice from CM. CONCLUSION: Our data provide evidence for a novel mechanism through which astrocytes could be involved in the neuropathophysiology of CM. p21 gene expression in blood cell and an elevated plasma CXCL-10 concentration could be valuable biomarkers of CM in humans. In the end, we believe senolytic drugs shall open up new avenues to develop newer treatment options.


Asunto(s)
Malaria Cerebral , Humanos , Animales , Ratones , Enfermedades Neuroinflamatorias , Astrocitos , Senoterapéuticos , Autofagia
3.
Bio Protoc ; 13(7): e4612, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056241

RESUMEN

Cellular senescence is a reprogrammed cell state triggered as an adaptative response to a variety of stresses, most often those affecting the genome integrity. Senescent cells accumulate in most tissues with age and contribute to the development of several pathologies. Studying molecular pathways involved in senescence induction and maintenance, or in senescence escape, can be hindered by the heterogeneity of senescent cell populations. Here, we describe a flow cytometry strategy for sorting senescent cells according to three senescence canonical markers whose thresholds can be independently adapted to be more or less stringent: (i) the senescence-associated-ß-galactosidase (SA-ß-Gal) activity, detected using 5-dodecanoylaminofluorescein Di-ß-D-galactopyranoside (C12FDG), a fluorigenic substrate of ß-galactosidase; (ii) cell size, proportional to the forward scatter value, since increased size is one of the major changes observed in senescent cells; and (iii) cell granularity, proportional to the side scatter value, which reflects the accumulation of aggregates, lysosomes, and altered mitochondria in senescent cells. We applied this protocol to the sorting of normal human fibroblasts at the replicative senescence plateau. We highlighted the challenge of sorting these senescent cells because of their large sizes, and established that it requires using sorters equipped with a nozzle of an unusually large diameter: at least 200 µm. We present evidence of the sorting efficiency and sorted cell viability, as well as of the senescent nature of the sorted cells, confirmed by the detection of other senescence markers, including the expression of the CKI p21 and the presence of 53BP1 DNA damage foci. Our protocol makes it possible, for the first time, to sort senescent cells from contaminating proliferating cells and, at the same time, to sort subpopulations of senescent cells featuring senescent markers to different extents. Graphical abstract.

4.
PLoS One ; 18(1): e0279028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662875

RESUMEN

Nod-Like Receptor Pyrin domain-containing protein 6 (NLRP6), a member of the Nucleotide-oligomerization domain-Like Receptor (NLR) family of proteins, assembles together with the ASC protein to form an inflammasome upon stimulation by bacterial lipoteichoic acid and double-stranded DNA. Besides its expression in myeloid cells, NLRP6 is also expressed in intestinal epithelial cells where it may contribute to the maintenance of gut homeostasis and negatively controls colorectal tumorigenesis. Here, we report that NLRP6 is very faintly expressed in several colon cancer cell lines, detected only in cytoplasmic small dots were it colocalizes with ASC. Consequently, it is very hardly detected by standard western-blotting techniques by several presently available commercial antibodies which, in contrast, highly cross-react with a protein of 90kDa that we demonstrate to be unrelated to NLRP6. We report here these results to caution the community not to confuse the 90kDa protein with the endogenous human NLRP6.


Asunto(s)
Inflamasomas , Neoplasias , Humanos , Inflamasomas/metabolismo , Homeostasis , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular
5.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377661

RESUMEN

Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment.


Asunto(s)
Antineoplásicos , Neuralgia , Animales , Ratones , Cisplatino/efectos adversos , Purinas/farmacología , Neuralgia/inducido químicamente , Receptor de Adenosina A2A , Antineoplásicos/efectos adversos
6.
Nucleic Acids Res ; 50(13): 7493-7510, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35819196

RESUMEN

Cellular senescence triggers various types of heterochromatin remodeling that contribute to aging. However, the age-related mechanisms that lead to these epigenetic alterations remain elusive. Here, we asked how two key aging hallmarks, telomere shortening and constitutive heterochromatin loss, are mechanistically connected during senescence. We show that, at the onset of senescence, pericentromeric heterochromatin is specifically dismantled consisting of chromatin decondensation, accumulation of DNA breakages, illegitimate recombination and loss of DNA. This process is caused by telomere shortening or genotoxic stress by a sequence of events starting from TP53-dependent downregulation of the telomere protective protein TRF2. The resulting loss of TRF2 at pericentromeres triggers DNA breaks activating ATM, which in turn leads to heterochromatin decondensation by releasing KAP1 and Lamin B1, recombination and satellite DNA excision found in the cytosol associated with cGAS. This TP53-TRF2 axis activates the interferon response and the formation of chromosome rearrangements when the cells escape the senescent growth arrest. Overall, these results reveal the role of TP53 as pericentromeric disassembler and define the basic principles of how a TP53-dependent senescence inducer hierarchically leads to selective pericentromeric dismantling through the downregulation of TRF2.


Asunto(s)
Senescencia Celular , Centrómero , Heterocromatina , Acortamiento del Telómero , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Cromatina , Daño del ADN , Regulación hacia Abajo , Células HeLa , Humanos , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
7.
Elife ; 112022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302491

RESUMEN

A rare but severe complication of curative-intent radiation therapy is the induction of second primary cancers. These cancers preferentially develop not inside the planning target volume (PTV) but around, over several centimeters, after a latency period of 1-40 years. We show here that normal human or mouse dermal fibroblasts submitted to the out-of-field dose scattering at the margin of a PTV receiving a mimicked patient's treatment do not die but enter in a long-lived senescent state resulting from the accumulation of unrepaired DNA single-strand breaks, in the almost absence of double-strand breaks. Importantly, a few of these senescent cells systematically and spontaneously escape from the cell cycle arrest after a while to generate daughter cells harboring mutations and invasive capacities. These findings highlight single-strand break-induced senescence as the mechanism of second primary cancer initiation, with clinically relevant spatiotemporal specificities. Senescence being pharmacologically targetable, they open the avenue for second primary cancer prevention.


Asunto(s)
Reparación del ADN , Neoplasias Primarias Secundarias , Animales , Carcinogénesis , Transformación Celular Neoplásica , Senescencia Celular , Roturas del ADN de Cadena Simple , Daño del ADN , Ratones
8.
Adv Cancer Res ; 150: 285-334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33858599

RESUMEN

Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.


Asunto(s)
Transformación Celular Neoplásica , Senescencia Celular/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/genética
9.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33037071

RESUMEN

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Ácidos Grasos/genética , Estudio de Asociación del Genoma Completo , Humanos , Gotas Lipídicas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/genética , Obesidad/genética , Obesidad/metabolismo , Oxidación-Reducción , PPAR alfa/genética , Sirtuina 1/genética
10.
Trends Biochem Sci ; 45(5): 371-374, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32311331

RESUMEN

Senescence is a complex cellular state, which can be considered as a stress response phenotype. However, the mechanisms through which cells acquire and maintain this phenotype are not fully understood. In this paper, it is argued that the unfolded protein response (UPR) may represent a signalling platform that is associated with the major senescence hallmarks.


Asunto(s)
Senescencia Celular , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Homeostasis , Humanos
11.
Cancer Lett ; 463: 50-58, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31404612

RESUMEN

Many cancers respond to initial treatment but most of them relapse due to the persistence of dormant tumor cells. Determining the exact nature of the dormant state is crucial to develop therapies aiming to eradicate the dormant cells. Here, we argue that therapy-induced senescence of cancer cells could be an alternative form of dormancy.


Asunto(s)
Transformación Celular Neoplásica/patología , Recurrencia Local de Neoplasia/patología , Neoplasias/patología , Antineoplásicos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Humanos , Neoplasia Residual/patología , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/fisiología
12.
Cancer Lett ; 438: 187-196, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30213560

RESUMEN

The incidence of carcinomas highly increases with age. However, the initial steps of the age-related molecular carcinogenic processes remain poorly characterized. We previously showed that normal human epidermal keratinocytes spontaneously and systematically escape from senescence to give rise to preneoplastic emerging cells through a process called post-senescence neoplastic emergence (PSNE). To identify molecular pathways involved in the switch from senescence to pre-transformation, we performed Connectivity Map analyses and DAVID functional annotations followed by hierarchical clustering and multidimensional scaling of the gene expression signature of PSNE cells. We identified endoplasmic reticulum stress related pathways as key regulators of PSNE. Invalidation by RNA interference of the UPR sensors PERK, ATF6α, but not IRE1α, delayed the occurrence of senescence when performed in pre-senescent cells, and increased the PSNE frequency when performed in already senescent cells. Conversely, endoplasmic reticulum stress inducers applied to already senescent cells decreased the frequency of PSNE. In conclusion, these results indicate that the activation of the UPR could protect from the early carcinogenic steps by senescence evasion. This opens new avenues to explore therapeutics that could be useful in decreasing the age-associated tumor incidence.


Asunto(s)
Factor de Transcripción Activador 6/genética , Transformación Celular Neoplásica/genética , Transcriptoma , Respuesta de Proteína Desplegada/genética , eIF-2 Quinasa/genética , Factor de Transcripción Activador 6/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Línea Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/clasificación , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismo
13.
Med Sci (Paris) ; 34(3): 223-230, 2018 Mar.
Artículo en Francés | MEDLINE | ID: mdl-29547108

RESUMEN

When ageing, cells profoundly reprogram to enter a state called senescence. Although the link between senescence and cancer is well established, the nature of this link remains unclear and debated. We will describe in this article the properties of senescent cells and make clear on how they could promote or oppose to cancer initiation and progression. We will also consider senescence as a response to classical anti-cancer therapies and discuss how to take advantage of senescence to improve the efficacy of these therapies while decreasing their toxicity.


Asunto(s)
Senescencia Celular/fisiología , Neoplasias/patología , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Progresión de la Enfermedad , Humanos , Neoplasias/genética
14.
Mech Ageing Dev ; 170: 82-91, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28803844

RESUMEN

Senescence is recognized as a cellular state acquired in response to various stresses. It occurs in correlation with the activation of the Unfolded Protein Response (UPR) pathway. However, the UPR targets which might relay the establishment of the senescent phenotype are not known. Herein, we investigated whether the up-regulation of the COX2 (PTGS2) limiting enzyme in the prostaglandin biosynthesis pathway, known to mediate cellular senescence in normal human fibroblasts, could be controlled by the UPR sensors ATF6α, IRE1α and PERK. We found that UPR inducers cause premature senescence through an increase in COX2 expression, and an overproduction of prostaglandin E2 (PGE2) in wild type fibroblasts but not in ATF6α invalidated ones. In replicative senescent fibroblasts, ATF6α and IRE1α silencing abrogated COX2 up-regulation and PGE2 production. The expanded ER and the large cell size characteristics of senescent fibroblasts were both reduced upon the invalidation of COX2 as well as ATF6α. These effects of the ATF6α invalidation were prevented by favoring the import of PGE2, but not just by supplying extracellular PGE2. Taken together, our results support a critical role of ATF6α in the establishment and maintenance of cellular senescence in normal human fibroblasts via the up-regulation of a COX2/PGE2 intracrine pathway.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Senescencia Celular , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada , Ciclooxigenasa 2/genética , Dinoprostona/genética , Fibroblastos/patología , Humanos
15.
J Control Release ; 266: 198-204, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-28965859

RESUMEN

Intracellular delivery of functional compounds into living cells is of great importance for cell biology as well as therapeutic applications. Often it is sufficient that the compound of interest (being a molecule or nanoparticle) is delivered to the cell population as a whole. However, there are applications that would benefit considerably from the possibility of delivering a compound to a certain subpopulation of cells, or even in selected single cells. Here we report on an integrated platform for high-throughput spatially resolved nanoparticle-enhanced photoporation (SNAP) of adherent cells. SNAP enables safe, intracellular delivery of exogenously administered nanomaterials in selected subpopulations of cells, even down to the single cell level. We demonstrate the power of SNAP by selectively delivering a safe contrast agent into a subpopulation of polynucleated keratinocytes, enabling their downstream purification for unraveling their role in neoplasm formation. The flexibility and speed with which individual cells can be labeled make SNAP an ideal tool for high-throughput applications, not only for selective labeling but also for targeted drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Oro/administración & dosificación , Queratinocitos/metabolismo , Nanopartículas del Metal/administración & dosificación , Medios de Contraste/administración & dosificación , Células HeLa , Humanos , Rayos Láser
16.
Cell Mol Life Sci ; 74(24): 4471-4509, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28707011

RESUMEN

Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.


Asunto(s)
Adaptación Biológica/fisiología , Carcinogénesis/patología , Senescencia Celular/fisiología , Células Epiteliales/patología , Estrés Fisiológico/fisiología , Animales , Fibroblastos/patología , Humanos
17.
Oncotarget ; 8(2): 2916-2935, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27935866

RESUMEN

The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFßR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.


Asunto(s)
Apoptosis/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Factores de Transcripción de Tipo Kruppel/metabolismo , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Quinasa de Punto de Control 2/metabolismo , Etopósido/farmacología , Histona Desacetilasas/metabolismo , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/metabolismo , Sirtuina 1/genética , Sumoilación , Transactivadores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Mol Cell Oncol ; 3(5): e1190885, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27857969

RESUMEN

In contrast to fibroblasts, epithelial cells spontaneously escape from senescence and develop clones of mutated, transformed, and tumorigenic cells. Recently, we revealed that accumulation of unrepaired DNA single-strand breaks is a trigger of the p16 (CDKN2)-dependent cell cycle arrest pathway in senescent epithelial cells and also the mutagenic motor of post-senescence neoplastic escape.

19.
Oncotarget ; 7(42): 67699-67715, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27563820

RESUMEN

Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated ß-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-ß-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.


Asunto(s)
Factor de Transcripción Activador 6/genética , Senescencia Celular/genética , Fibroblastos/metabolismo , Respuesta de Proteína Desplegada/genética , Factor de Transcripción Activador 6/metabolismo , Adulto , Células Cultivadas , Niño , Dermis/citología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Estrés del Retículo Endoplásmico/genética , Femenino , Fibroblastos/citología , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Masculino , Microscopía Electrónica de Transmisión , Interferencia de ARN , Transducción de Señal/genética
20.
Nat Commun ; 7: 10399, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26822533

RESUMEN

The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis.


Asunto(s)
Senescencia Celular , Roturas del ADN de Cadena Simple , Células Epiteliales/citología , Neoplasias/genética , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA