Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Mech ; 66(4): 827-849, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33029034

RESUMEN

In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncertainties arising in the solid material parameters and the critical energy release rate. A reference value (obtained on a sufficiently refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time- and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.

2.
Comput Mech ; 64(4): 937-949, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31929667

RESUMEN

In this paper, we employ the multilevel Monte Carlo finite element method to solve the stochastic Cahn-Hilliard-Cook equation. The Ciarlet-Raviart mixed finite element method is applied to solve the fourth-order equation. In order to estimate the mild solution, we use finite elements for space discretization and the semi-implicit Euler-Maruyama method in time. For the stochastic scheme, we use the multilevel method to decrease the computational cost (compared to the Monte Carlo method). We implement the method to solve three specific numerical examples (both two- and three dimensional) and study the effect of different noise measures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA