Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003732

RESUMEN

Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Capilares/patología , Glicocálix/metabolismo , Lantano , Riñón/patología , Ratones Endogámicos
2.
Cells ; 11(15)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35954280

RESUMEN

Rapidly progressive crescentic glomerulonephritis associated with anti-neutrophil cytoplasmic antibodies (ANCA-GN) is a major cause of renal failure. Current immunosuppressive therapies are associated with severe side effects, intensifying the need for new therapeutic strategies. The activation of Mas receptor/Angiotensin-(1-7) axis exerted renoprotection in chronic kidney disease. Here, we investigated the effect of adding the lanthionine-stabilized cyclic form of angiotensin-1-7 [cAng-(1-7)] to cyclophosphamide in a rat model of ANCA-GN. At the onset of proteinuria, Wistar Kyoto rats with ANCA-GN received vehicle or a single bolus of cyclophosphamide, with or without daily cAng-(1-7). Treatment with cAng-(1-7) plus cyclophosphamide reduced proteinuria by 85% vs. vehicle, and by 60% vs. cyclophosphamide, and dramatically limited glomerular crescents to less than 10%. The addition of cAng-(1-7) to cyclophosphamide protected against glomerular inflammation and endothelial rarefaction and restored the normal distribution of parietal epithelial cells. Ultrastructural analysis revealed a preserved GBM, glomerular endothelium and podocyte structure, demonstrating that combination therapy provided an additional layer of renoprotection. This study demonstrates that adding cAng-(1-7) to a partially effective dose of cyclophosphamide arrests the progression of renal disease in rats with ANCA-GN, suggesting that cAng-(1-7) could be a novel clinical approach for sparing immunosuppressants.


Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos , Glomerulonefritis , Angiotensina I , Animales , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Glomerulonefritis/tratamiento farmacológico , Fragmentos de Péptidos , Proteinuria/complicaciones , Ratas , Ratas Endogámicas WKY
3.
Cells ; 11(11)2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35681450

RESUMEN

Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS. Mice coinjected with Stx2/LPS exhibited glomerular podocyte and tubular C3 deposits and C3aR overexpression associated with cell damage, which were limited by C3aR antagonist treatment. C3a promoted renal injury by affecting mitochondrial wellness as demonstrated by data showing that C3aR blockade reduced mitochondrial ultrastructural abnormalities and preserved mitochondrial mass and energy production. In cultured podocytes and tubular cells, C3a caused altered mitochondrial fragmentation and distribution, and reduced anti-oxidant SOD2 activity. Stx2 potentiated the responsiveness of renal cells to the detrimental effects of C3a through increased C3aR protein expression. These results indicate that C3aR may represent a novel target in Stx-associated HUS for the preservation of renal cell integrity through the maintenance of mitochondrial function.


Asunto(s)
Síndrome Hemolítico-Urémico , Podocitos , Receptores de Complemento , Toxina Shiga II , Animales , Síndrome Hemolítico-Urémico/etiología , Síndrome Hemolítico-Urémico/metabolismo , Glomérulos Renales , Ratones , Mitocondrias/metabolismo , Podocitos/metabolismo , Receptores de Complemento/metabolismo , Toxina Shiga II/farmacología
4.
Nephron ; 145(4): 428-444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33910203

RESUMEN

BACKGROUND/AIM: Necrotizing crescentic glomerulonephritis (GN) associated with anti-neutrophil cytoplasmic antibodies (ANCA) against myeloperoxidase (MPO) is a devastating disease that quickly progresses to kidney failure. Current therapies are broadly immunosuppressive and associated with adverse effects. We wanted to set up a model that could be suitable for testing narrowly targeted therapies. METHODS: The model was constructed in male Wistar Kyoto rats through injections of human MPO (hMPO) and pertussis toxin, followed by a sub-nephritogenic dose of sheep anti-rat glomerular basement membrane (GBM) serum to boost the disease. Rats were monitored for 35 days. Rats given hMPO alone, saline, or human serum albumin with or without anti-GBM serum were also studied. RESULTS: Rats receiving hMPO developed circulating anti-hMPO and anti-rat MPO antibodies. Challenging hMPO-immunized rats with the anti-GBM serum led to more glomerular neutrophil infiltration and MPO release, and severe haematuria, heavy proteinuria, and higher blood urea nitrogen than hMPO alone. Pauci-immune GN developed with crescents, affecting 25% of glomeruli. The majority of crescents were fibrocellular. Necrotizing lesions and Bowman capsule ruptures were detected. Cells double positive for claudin-1 (a marker of parietal epithelial cells [PECs]) and neural cell adhesion molecule (NCAM; progenitor PECs) were present in crescents. Double staining for NCAM and Ki-67 established proliferative status of progenitor PECs. Podocyte damage was associated with endothelial and GBM changes by electron microscopy. Monocyte/macrophages and CD4+ and CD8+ T cells accumulated in glomeruli and the surrounding area and in the tubulointerstitium. Lung haemorrhage also manifested. CONCLUSION: This model reflects histological lesions of human ANCA-associated rapidly progressive GN and may be useful for investigating new therapies.


Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Glomerulonefritis/inmunología , Peroxidasa/inmunología , Animales , Nitrógeno de la Urea Sanguínea , Cápsula Glomerular/patología , Células Epiteliales/patología , Membrana Basal Glomerular/inmunología , Hematuria/etiología , Humanos , Glomérulos Renales/patología , Masculino , Infiltración Neutrófila , Toxina del Pertussis/farmacología , Proteinuria/etiología , Ratas , Ratas Endogámicas WKY
6.
Nephron ; 144(4): 195-203, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32050203

RESUMEN

A membranoproliferative pattern of glomerular injury is frequently observed in patients with complement-mediated disorders, such as C3 glomerulopathies (C3G) and primary immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN). The outcomes of C3G and -IC-MPGN are poor, independently of immunosuppressive therapy. However, two 48-week treatment periods with the anti-C5 monoclonal antibody eculizumab, divided by a -12-week washout period, achieved remission of proteinuria and stabilization/improvement of the glomerular filtration rate (GFR), measured through iohexol plasma clearance, in 3 of 10 patients with biopsy-proven MPGN, nephrotic syndrome and terminal complement complex sC5b-9 plasma levels >1,000 mg/mL, at inclusion. Baseline and end-of-study kidney biopsies were available for 2 patients with IC-MPGN, and their baseline characteristics were similar. However, in 1 patient proteinuria and GFR did not improve during the study, whereas in the other proteinuria decreased from 4.84 to 2.12 g/24-h and GFR increased from 91.5 to 142.7 mL/min/1.73 m2. Glomerular inflammation improved and median (interquartile range) glomerular staining for C5b-9 decreased in both cases: from 23.6 to 18.2% (p = 0.021) in the patient who achieved remission and from 15.8 to 10.7% (p = 0.019) in the patient with persistent proteinuria. Chronic glomerular lesions progressed and C3 glomerular staining and electron-dense deposits did not change appreciably in either case. However, in the patient who achieved remission, ultrastructural evaluation revealed features of glomerular microangiopathy at inclusion, which fully recovered posttreatment. Podocyte foot process effacement was observed in both patients at inclusion, but recovered only in the patient with microangiopathy. Thus, in 2 patients with -IC-MPGN, chronic glomerular changes progressed despite eculizumab-induced amelioration of glomerular inflammation and inhibition of sC5b-9 deposition, and independently of treatment effects on proteinuria and podocytes. The finding that the regression of microangiopathic changes was associated with improved clinical outcomes suggests that C5 blockade might have a therapeutic role in patients with IC-MPGN displaying microangiopathic endothelial injury.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Complejo Antígeno-Anticuerpo/inmunología , Activación de Complemento , Convertasas de Complemento C3-C5/antagonistas & inhibidores , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Glomerulonefritis Membranoproliferativa/tratamiento farmacológico , Adolescente , Convertasas de Complemento C3-C5/análisis , Femenino , Tasa de Filtración Glomerular , Glomerulonefritis Membranoproliferativa/inmunología , Glomerulonefritis Membranoproliferativa/patología , Humanos , Masculino
7.
Methods Mol Biol ; 2067: 63-87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31701446

RESUMEN

The increasing prevalence of diabetes worldwide has led to a concomitant rise in diabetic kidney disease (DKD) as a major cause of end-stage renal disease. Glomerular lesions constitute the most striking and consistent features identified in biopsies from patients with DKD, although tubulointerstitial injury has an important and often under-recognized role in the progression to overt nephropathy. In advanced stages of the disease, podocyte detachment is a pivotal event in the loss of glomerular filtration barrier integrity and may explain, at least in part, the inability of current therapies to halt renal function decline. This chapter details the systematic method that can be used to study renal tissue samples from diabetic patients, and the specific role of different imaging techniques, such as light microscopy, immunofluorescence microscopy, and transmission and scanning electron microscopy in detecting histologic lesions specific to DKD.


Asunto(s)
Nefropatías Diabéticas/diagnóstico , Técnicas de Preparación Histocitológica/métodos , Glomérulos Renales/patología , Biopsia , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Humanos , Glomérulos Renales/diagnóstico por imagen , Glomérulos Renales/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Microscopía Fluorescente/métodos , Coloración y Etiquetado/métodos
8.
Kidney Int ; 96(4): 906-917, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31307778

RESUMEN

The Renin-Angiotensin System (RAS) possesses a counter-regulatory axis composed of angiotensin converting enzyme (ACE)2, angiotensin-(1-7) [Ang-(1-7)] and the Mas receptor, which opposes many AT1-receptor-mediated effects of ligand angiotensin II. Ang-(1-7), as a ligand of the Mas receptor, has inhibitory effects on renal inflammation and fibrosis in experimental diabetes. However, Ang-(1-7) has a short half-life in plasma, which may render it unsuitable for use in clinics. Here, we investigated the effects of the lanthionine-stabilized Ang-(1-7), cyclic (c)Ang-(1-7), a lanthipeptide that is more peptidase-resistant than the linear peptide, in BTBR ob/ob mice with type 2 diabetic nephropathy. BTBR ob/ob mice received vehicle, cAng-(1-7), or the ACE inhibitor lisinopril. The treatment started at ten weeks of age, when the animals had already developed albuminuria, and ended at 19-20 weeks of age. cAng-(1-7) limited albuminuria progression, and limited podocyte dysfunction similarly to lisinopril. cAng-(1-7), unlike lisinopril, reduced glomerular fibrosis and inflammation, and counteracted glomerular capillary rarefaction. Furthermore, when cAng-(1-7) was combined with lisinopril, a superior antiproteinuric effect than with lisinopril alone was found, in association with better preservation of podocyte proteins and amelioration of capillary density. Thus, adding cAng-(1-7) to ACE-inhibitor therapy could benefit those diabetic patients who do not respond completely to ACE-inhibitor therapy.


Asunto(s)
Angiotensina I/administración & dosificación , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Fragmentos de Péptidos/administración & dosificación , Proteinuria/tratamiento farmacológico , Alanina/administración & dosificación , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Angiotensina I/química , Angiotensina I/farmacocinética , Animales , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Quimioterapia Combinada/métodos , Semivida , Humanos , Glomérulos Renales/irrigación sanguínea , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Glomérulos Renales/ultraestructura , Lisinopril/administración & dosificación , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacocinética , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Proteinuria/diagnóstico , Proteinuria/etiología , Proteinuria/patología , Sulfuros/administración & dosificación , Sulfuros/química , Sulfuros/farmacocinética
9.
J Hypertens ; 36(5): 1129-1146, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29278547

RESUMEN

OBJECTIVES: The simultaneous presence of cardiac and renal diseases is a pathological condition that leads to increased morbidity and mortality. Several lines of evidence have suggested that lipid dysmetabolism and mitochondrial dysfunction are pathways involved in the pathological processes affecting the heart and kidney. In the salt-loaded spontaneously hypertensive stroke-prone rat (SHRSP), a model of cardiac hypertrophy and nephropathy that shows mitochondrial alterations in the myocardium, we evaluated the cardiorenal effects of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist that acts by modulating mitochondrial and peroxisomal fatty acid oxidation. METHODS: Male SHRSPs aged 6-7 weeks were divided in three groups: standard diet (n = 6), Japanese diet with vehicle (n = 6), and Japanese diet with fenofibrate 150 mg/kg/day (n = 6) for 5 weeks. Cardiac and renal functions were assessed in vivo by MRI, ultrasonography, and biochemical assays. Mitochondria were investigated by transmission electron microscopy, succinate dehydrogenase (SDH) activity, and gene expression analysis. RESULTS: Fenofibrate attenuated cardiac hypertrophy, as evidenced by histological and MRI analyses, and protected the kidneys, preventing morphological alterations, changes in arterial blood flow velocity, and increases in 24-h proteinuria. Cardiorenal inflammation, oxidative stress, and cellular senescence were also inhibited by fenofibrate. In salt-loaded SHRSPs, we observed severe morphological mitochondrial alterations, reduced SDH activity, and down-regulation of genes regulating mitochondrial fatty-acid oxidation (i.e. PPARα, SIRT3, and Acadm). These changes were counteracted by fenofibrate. In vitro, a direct protective effect of fenofibrate on mitochondrial membrane potential was observed in albumin-stimulated NRK-52E renal tubular epithelial cells. CONCLUSION: The results suggest that the cardiorenal protective effects of fenofibrate in young male salt-loaded SHRSPs are explained by its capacity to preserve mitochondrial function.


Asunto(s)
Cardiomegalia/prevención & control , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Enfermedades Renales/prevención & control , Mitocondrias/metabolismo , Acil-CoA Deshidrogenasa/genética , Animales , Cardiomegalia/diagnóstico por imagen , Senescencia Celular/efectos de los fármacos , Fenofibrato/uso terapéutico , Expresión Génica , Hipolipemiantes/uso terapéutico , Inflamación/metabolismo , Inflamación/prevención & control , Riñón/metabolismo , Enfermedades Renales/metabolismo , Imagen por Resonancia Magnética , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/ultraestructura , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/agonistas , PPAR alfa/genética , Proteinuria/metabolismo , Proteinuria/prevención & control , Ratas , Ratas Endogámicas SHR , Sirtuinas/genética , Cloruro de Sodio Dietético/administración & dosificación , Succinato Deshidrogenasa/metabolismo
10.
Nephron ; 137(2): 148-154, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683450

RESUMEN

Glomerulonephritis as well as kidney injury secondary to fulminant intravascular hemolysis are rare extrapulmonary manifestations of Mycoplasma pneumoniae infection. We describe a 50-year-old female diagnosed with M. pneumoniae infection-associated hemolytic anemia, characterized by negative cold agglutinin tests but with laboratory evidence of complement alternative pathway activation. The patient presented both with anemia and severe kidney failure and she was treated with steroids and red blood cell transfusions along with plasmapheresis. She also received a short course of antibiotics. Renal biopsy showed combined features of resolving postinfectious glomerulonephritis and hemolysis-associated extensive acute tubular injury characterized by renal hemosiderosis and intratubular hemoglobin casts. Electron microscopy revealed features of glomerular microangiopathic injury. The treatment led to complete disease remission and a favorable renal outcome at the first year follow-up.


Asunto(s)
Lesión Renal Aguda/etiología , Anemia Hemolítica/etiología , Mycoplasma pneumoniae , Neumonía por Mycoplasma/complicaciones , Lesión Renal Aguda/patología , Antibacterianos/uso terapéutico , Femenino , Glomerulonefritis/etiología , Hemoglobinas/metabolismo , Hemosiderosis/etiología , Humanos , Riñón/patología , Fallo Renal Crónico/complicaciones , Persona de Mediana Edad , Neumonía por Mycoplasma/tratamiento farmacológico , Resultado del Tratamiento
11.
Sci Rep ; 6: 28445, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27345360

RESUMEN

Podocyte loss is the initial event in the development of glomerulosclerosis, the structural hallmark of progressive proteinuric nephropathies. Understanding mechanisms underlying glomerular injury is the key challenge for identifying novel therapeutic targets. In mice with protein-overload induced by bovine serum albumin (BSA), we evaluated whether the alternative pathway (AP) of complement mediated podocyte depletion and podocyte-dependent parietal epithelial cell (PEC) activation causing glomerulosclerosis. Factor H (Cfh(-/-)) or factor B-deficient mice were studied in comparison with wild-type (WT) littermates. WT+BSA mice showed podocyte depletion accompanied by glomerular complement C3 and C3a deposits, PEC migration to capillary tuft, proliferation, and glomerulosclerosis. These changes were more prominent in Cfh(-/-) +BSA mice. The pathogenic role of AP was documented by data that factor B deficiency preserved glomerular integrity. In protein-overload mice, PEC dysregulation was associated with upregulation of CXCR4 and GDNF/c-Ret axis. In vitro studies provided additional evidence of a direct action of C3a on proliferation and CXCR4-related migration of PECs. These effects were enhanced by podocyte-derived GDNF. In patients with proteinuric nephropathy, glomerular C3/C3a paralleled PEC activation, CXCR4 and GDNF upregulation. These results indicate that mechanistically uncontrolled AP complement activation is not dispensable for podocyte-dependent PEC activation resulting in glomerulosclerosis.


Asunto(s)
Complemento C3a/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Adulto , Animales , Bovinos , Proliferación Celular , Células Cultivadas , Factor B del Complemento/deficiencia , Factor B del Complemento/genética , Factor H de Complemento/deficiencia , Factor H de Complemento/genética , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Riñón/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Podocitos/citología , Podocitos/metabolismo , Proteinuria/etiología , Albúmina Sérica Bovina/administración & dosificación , Regulación hacia Arriba , Adulto Joven
12.
PLoS One ; 11(2): e0150083, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26919698

RESUMEN

Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.


Asunto(s)
Glomérulos Renales/efectos de los fármacos , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Lipoproteína X/toxicidad , Proteinuria/etiología , Animales , Apolipoproteína A-I/metabolismo , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/ultraestructura , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Membrana Basal Glomerular/efectos de los fármacos , Membrana Basal Glomerular/patología , Mesangio Glomerular/citología , Mesangio Glomerular/metabolismo , Mesangio Glomerular/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-6/metabolismo , Glomérulos Renales/patología , Deficiencia de la Lecitina Colesterol Aciltransferasa/patología , Lipoproteína X/metabolismo , Lipoproteína X/farmacocinética , Lipoproteínas HDL/metabolismo , Lisosomas/metabolismo , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfolipasas A2/metabolismo , Pinocitosis , Podocitos/metabolismo , Podocitos/patología , Proteinuria/inducido químicamente , Proteinuria/genética , Proteinuria/patología
13.
J Am Soc Nephrol ; 27(5): 1400-11, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26516208

RESUMEN

Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research.


Asunto(s)
Líquido Amniótico/citología , Organoides/citología , Podocitos , Células Madre , Animales , Células Cultivadas , Humanos , Riñón/citología , Ratones
14.
Nephron ; 132(1): 59-69, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26646377

RESUMEN

BACKGROUND/AIMS: A critical involvement of the endocannabinoid/cannabinoid receptor system in diabetes and its complications has been recognized. Experimental evidence suggested that activation of the cannabinoid receptor type 2 (CB2), which is expressed in the kidney by podocytes and inflammatory cells, had a protective role in early streptozotocin-induced type 1 diabetes in mice. No experimental evidence is so far available on the effects of CB2 agonists in type 2 diabetes. In this study, we investigated the effects of a CB2 agonist given at a phase of overt disease on renal functional and structural changes in BTBR ob/ob mice, a model of type 2 diabetic nephropathy. METHODS: BTBR ob/ob mice received, from 10 to 21 weeks of age, vehicle, the selective CB2 agonist HU910, or lisinopril used as standard therapy for comparison. BTBR wild-type mice served as controls. RESULTS: Treatment with CB2 agonist reduced progressive albuminuria of BTBR ob/ob mice to a similar extent as ACE inhibitor. The antiproteinuric effect of CB2 agonist was associated with the amelioration of the defective nephrin expression in podocytes of diabetic mice. CB2 agonist limited mesangial matrix expansion, fibronectin accumulation and sclerosis. Glomerular infiltration of Mac-2-positive monocytes/machrophages was attenuated by CB2 agonist, at least in part due to the drug's ability to reduce MCP-1 chemotactic signals. Renoprotective effects of CB2 were similar to those achieved by ACE inhibitor. CONCLUSION: These results suggest that CB2 agonism is a potential option to be added to the available therapeutic armamentarium for type 2 diabetic nephropathy.


Asunto(s)
Albuminuria/tratamiento farmacológico , Albuminuria/etiología , Compuestos Bicíclicos con Puentes/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/complicaciones , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Receptor Cannabinoide CB2/agonistas , Albuminuria/patología , Animales , Glucemia/metabolismo , Presión Sanguínea , Neuropatías Diabéticas/patología , Tasa de Filtración Glomerular , Riñón/patología , Enfermedades Renales/patología , Masculino , Ratones , Ratones Obesos , Podocitos/patología
15.
EBioMedicine ; 2(5): 456-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26137589

RESUMEN

The pathophysiology of glomerular lesions of membranous nephropathy (MN), including seldom-reported IgG4-related disease, is still elusive. Unlike in idiopathic MN where IgG4 prevails, in this patient IgG3 was predominant in glomerular deposits in the absence of circulating anti-phospholipase A2 receptor antibodies, suggesting a distinct pathologic process. Here we documented that IgG4 retrieved from the serum of our propositus reacted against carbonic anhydrase II (CAII) at the podocyte surface. In patient's biopsy, glomerular CAII staining increased and co-localized with subepithelial IgG4 deposits along the capillary walls. Patient's IgG4 caused a drop in cell pH followed by mitochondrial dysfunction, excessive ROS production and cytoskeletal reorganization in cultured podocytes. These events promoted mitochondrial superoxide-dismutase-2 (SOD2) externalization on the plasma membrane, becoming recognizable by complement-binding IgG3 anti-SOD2. Among patients with IgG4-related disease only sera of those with IgG4 anti-CAII antibodies caused low intracellular pH and mitochondrial alterations underlying SOD2 externalization. Circulating IgG4 anti-CAII can cause podocyte injury through processes of intracellular acidification, mitochondrial oxidative stress and neoantigen induction in patients with IgG4 related disease. The onset of MN in a subset of patients could be due to IgG4 antibodies recognizing CAII with consequent exposure of mitochondrial neoantigen in the context of multifactorial pathogenesis of disease.


Asunto(s)
Autoinmunidad , Glomerulonefritis Membranosa/inmunología , Inmunoglobulina G/inmunología , Mitocondrias/metabolismo , Ácidos/metabolismo , Anciano , Anhidrasa Carbónica II/sangre , Anhidrasa Carbónica II/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Citoesqueleto/metabolismo , Exocitosis , Femenino , Glomerulonefritis Membranosa/sangre , Glomerulonefritis Membranosa/patología , Humanos , Glomérulos Renales/patología , Glomérulos Renales/ultraestructura , Masculino , Persona de Mediana Edad , Mitocondrias/ultraestructura , Podocitos/metabolismo , Podocitos/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
16.
PLoS One ; 10(3): e0120235, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811887

RESUMEN

New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures. Here, we studied whether metanephroi possess developmental capacity when transplanted under the kidney capsule of MWF male rats, a model of spontaneous nephropathy. We found that six weeks post-transplantation, renal primordia developed glomeruli and tubuli able to filter blood and to produce urine in cyst-like structures. Newly developed metanephroi were able to initiate a regenerative-like process in host renal tissues adjacent to the graft in MWF male rats as indicated by an increase in cell proliferation and vascular density, accompanied by mRNA and protein upregulation of VEGF, FGF2, HGF, IGF-1 and Pax-2. The expression of SMP30 and NCAM was induced in tubular cells. Oxidative stress and apoptosis markedly decreased. Our study shows that embryonic kidneys generate functional nephrons when transplanted into animals with severe renal disease and at the same time activate events at least partly mimicking those observed in kidney tissues during renal regeneration.


Asunto(s)
Enfermedades Renales/terapia , Trasplante de Riñón , Regeneración , Animales , Apoptosis , Biomarcadores , Proliferación Celular , Femenino , Fibroblastos/metabolismo , Fibroblastos/trasplante , Expresión Génica , Supervivencia de Injerto , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Trasplante de Riñón/métodos , Masculino , Neovascularización Fisiológica , Estrés Oxidativo , Ratas , Regeneración/genética
17.
Nephrol Dial Transplant ; 30(5): 706-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25087196

RESUMEN

Chronic proteinuric renal diseases, independent from the type of the initial insult, have in common a loss of selectivity of the glomerular barrier to protein filtration. Glomerular sclerosis is the progressive lesion affecting the glomerular capillary wall, the primary site at which the protein filtration is abnormally enhanced by disease. Dysfunction of podocytes, that serve to maintain the intact barrier, is a central event in lesion development. However, glomerular injury is signalled to tubular and interstitial structures largely in advance of nephron destruction. Glomerular ultrafiltration of excessive amounts of plasma-derived proteins and associated factors incites tubulointerstitial damage and might amplify an inherent susceptibility of the kidney to become dysfunctional in several disease conditions. Thus, noxious substances in the proteinuric ultrafiltrate promote apoptotic responses and multiple changes in the phenotype of tubule cells with generation of inflammatory and fibrogenic mediators. The severity of tubular interstitial damage has long been recognized to be highly correlated to the degree of deterioration of renal failure even better than glomerular lesions. This review focuses on pathways of tubular injury and apoptosis that in turn promote nephron-by-nephron degeneration and interstitial fibrosis during proteinuria contributing to multifaceted processes of kidney scarring and function loss.


Asunto(s)
Enfermedades Renales/fisiopatología , Glomérulos Renales/fisiopatología , Riñón/patología , Esclerosis/fisiopatología , Animales , Apoptosis , Autofagia , Proteínas del Sistema Complemento/metabolismo , Progresión de la Enfermedad , Humanos , Inflamación/metabolismo , Nefritis Intersticial/fisiopatología , Nefronas/metabolismo , Proteinuria/metabolismo , Insuficiencia Renal/metabolismo
18.
Stem Cell Rev Rep ; 9(1): 65-79, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22237468

RESUMEN

Cell therapy with Multipotent Mesenchymal Stromal Cells (MSC) holds enormous promise for the treatment of a large number of degenerative and immune/inflammatory diseases. Their multilineage differentiation potential, immunoprivilege and capacity of promoting recovery of damaged tissues coupled with anti-inflammatory and immunosuppressive properties are the focus of a multitude of clinical studies currently underway. The recognized clinical potential of MSC repairing/immunomodulatory effects now encompasses graft-versus-host disease, hematologic malignancies, cardiovascular diseases, neurologic and inherited diseases, autoimmune diseases, organ transplantation, refractory wounds, and bone/cartilage defects among others. However, it has been suggested that both the need of extensive ex vivo culture for MSC clinical use, and their proangiogenic, anti-apoptotic and immunomodulatory properties may act together as tumor promoters, raising significant safety concerns. This paper will review the available data on in vitro MSC maldifferentiation and the ability of MSC to sustain tumor growth in vivo, with the aim to clarify whether MSC-based therapeutic approaches may carry actual risk of malignancies.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Neoplasias/metabolismo , Animales , Diferenciación Celular , Aberraciones Cromosómicas , Humanos , Ratones , Células Madre Multipotentes/trasplante
19.
Am J Physiol Renal Physiol ; 304(6): F808-19, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23136004

RESUMEN

Bardoxolone methyl is an antioxidant inflammation modulator acting through induction of Keap1-Nrf2 pathway. Results from a recent phase IIb clinical trial reported that bardoxolone methyl was associated with improvement in the estimated glomerular filtration rate in patients with advanced chronic kidney disease and Type 2 diabetes. However, increases in albuminuria, serum transaminase, and frequency of adverse events were noted. We studied the effect of 3-mo treatment with RTA 405, a synthetic triterpenoid analog of bardoxolone methyl in Zucker diabetic fatty rats with overt Type 2 diabetes. Rats were treated from 3 mo of age with vehicle, RTA 405, ramipril, or RTA 405 plus ramipril. RTA 405 caused severe changes in food intake and diuresis with decline in body weight, worsening of dyslipidemia, and increase in blood pressure. Early elevation in serum transaminase was followed by liver injury. RTA 405 worsened proteinuria, glomerulosclerosis, and tubular damage. Ramipril was renoprotective, but when given with RTA 405 it was not able to limit its worsening effects. These data could be due to degradation products in the drug substance used, as disclosed by the company once the study was concluded. To overcome such a drawback, the company offered to test dh404, a variant of RTA 405, in Zucker diabetic fatty rats. The dh404 did not display beneficial effects on proteinuria, glomerulosclerosis, and interstitial inflammation. Rather, kidneys from three rats receiving dh404 showed the presence of a granulomatous and inflammatory process reminiscent of a pseudotumor. Altogether these data raise serious concerns on the use of bardoxolone analogs in Type 2 diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Riñón/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Triterpenos/efectos adversos , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Cromatografía Liquida , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Diuresis/efectos de los fármacos , Ingestión de Líquidos/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Espectrometría de Masas , Ácido Oleanólico/efectos adversos , Ramipril/uso terapéutico , Ratas , Ratas Zucker , Circulación Renal/efectos de los fármacos
20.
J Am Soc Nephrol ; 23(11): 1857-68, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23085631

RESUMEN

The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.5 kidneys and then implanted these organoids below the kidney capsule of a living rat host. This implantation resulted in further maturation of kidney tissue, formation of vascularized glomeruli with fully differentiated capillary walls, including the slit diaphragm, and appearance of erythropoietin-producing cells. The implanted tissue exhibited physiologic functions, including tubular reabsorption of macromolecules, that gained access to the tubular lumen on glomerular filtration. The ability to generate vascularized nephrons from single-cell suspensions marks a significant step to the long-term goal of replacing renal function by a tissue-engineered kidney.


Asunto(s)
Riñón/embriología , Organoides/embriología , Ingeniería de Tejidos/métodos , Animales , Órganos Bioartificiales , Riñón/irrigación sanguínea , Riñón/citología , Riñón/fisiología , Trasplante de Riñón/métodos , Masculino , Ratones , Organoides/citología , Organoides/trasplante , Ratas , Ratas Desnudas , Trasplante Heterólogo , Factor A de Crecimiento Endotelial Vascular/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...