Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Cell Res ; 404(2): 112647, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015313

RESUMEN

Leptin is an adipokine of pleiotropic effects linked to energy metabolism, satiety, the immune response, and cardioprotection. We have recently shown that leptin causally conferred resistance to myocardial infarction-induced damage in transgenic αMUPA mice overexpressing leptin compared to their wild type (WT) ancestral mice FVB/N. Prompted by these findings, we have investigated here if leptin can counteract the inflammatory response triggered after LPS administration in tissues in vivo and in cardiomyocytes in culture. The results have shown that LPS upregulated in vivo and in vitro all genes examined here, both pro-inflammatory and antioxidant, as well as the leptin gene. Pretreating mice with leptin neutralizing antibodies further upregulated the expression of TNFα and IL-1ß in the adipose tissue of both mouse types, and in the αMUPA heart. The antibodies also increased the levels of serum markers for cell toxicity in both mouse types. These results indicate that under LPS, leptin actually reduced the levels of these inflammatory-related parameters. In addition, pretreatment with leptin antibodies reduced the levels of HIF-1α and VEGF mRNAs in the heart, indicating that under LPS leptin increased the levels of these mRNAs. In cardiomyocytes, pretreatment with exogenous leptin prior to LPS reduced the expression of both pro-inflammatory genes, enhanced the expression of the antioxidant genes HO-1, SOD2 and HIF-1α, and lowered ROS staining. In addition, results obtained with leptin antibodies and the SMLA leptin antagonist indicated that endogenous and exogenous leptin can inhibit leptin gene expression. Together, these findings have indicated that under LPS, leptin concomitantly downregulated pro-inflammatory genes, upregulated antioxidant genes, and lowered ROS levels. These results suggest that leptin can counteract inflammation in the heart and adipose tissue by modulating gene expression.


Asunto(s)
Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Leptina/metabolismo , Miocitos Cardíacos/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Inflamación/metabolismo , Leptina/farmacología , Lipopolisacáridos/farmacología , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos
2.
Exp Cell Res ; 397(2): 112373, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189721

RESUMEN

Leptin, an adipocyte-derived satiety hormone, has been previously linked to cardioprotection. We have shown before that leptin conferred resistance to ischemic damage in the heart in long-lived transgenic αMUPA mice overexpressing leptin compared to the wild type (WT) FVB/N control mice. To better understand the contribution of leptin to the ischemic heart, we measured here the expression of genes encoding leptin and ischemia-related proteins in αMUPA and WT mice in the heart vs adipose tissue after MI. In addition, we investigated gene expression in neonatal rat cardiomyocytes under hypoxia in the absence and presence of exogenously added leptin or a leptin antagonist. We used real time RT-PCR and ELISA or Western blot assays to measure, respectively, mRNA and protein levels. The results have shown that circulating leptin levels and mRNA levels of leptin and heme oxygenase-1 (HO-1) in the heart were elevated in both mouse genotypes after 24 h myocardial infarction (MI), reaching higher values in αMUPA mice. In contrast, leptin gene expression in the adipose tissue was significantly increased only in WT mice, but reaching lower levels compared to the heart. Expression of the proinflammatory genes encoding TNFα and IL-1ß was also largely increased after MI in the heart in both mouse types, however reaching considerably lower levels in αMUPA mice indicating a mitigated inflammatory state. In cardiomyocytes, mRNA levels of all aforementioned genes as well as HIF-1α and SOD2 genes were elevated after hypoxia. Pretreatment with exogenous leptin largely reduced the mRNA levels of TNFα and IL-1ß after hypoxia, while enhancing expression of all other genes and reducing ROS levels. Pretreating the cells with a leptin antagonist increased solely the levels of leptin mRNA, suggesting a negative regulation of the hormone on the expression of its own gene. Overall, the results have shown that leptin affects expression of genes in cardiomyocytes under hypoxia in a manner that could mitigate inflammation and oxidative stress, suggesting a similar influence by endogenous leptin in αMUPA mice. Furthermore, leptin is likely to function in the ischemic murine heart more effectively in an autocrine compared to paracrine manner. These results suggest that leptin can reduce ischemic damage by modulating gene expression in the heart.


Asunto(s)
Biomarcadores/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Leptina/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Femenino , Perfilación de la Expresión Génica , Ratones , Ratones Transgénicos , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...