Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Daru ; 2023 Dec 11.
Article En | MEDLINE | ID: mdl-38079104

BACKGROUND: Alzheimer's disease (AD) is a neurological disease that causes memory loss over time. Current therapies are limited and frequently inadequate. Epigallocatechin gallate (EGCG), has antioxidant, anti-inflammatory, antifibrosis, anti-remodeling and tissue-protective qualities that may be effective in treatment of different diseases, including AD. Because of nanoparticles' high surface area, they can enhance solubility, stability, pharmacokinetics and biodistribution, and diminish toxicities. Besides, lipid nanoparticles have a high binding affinity that can enhance the rate of drug transport across BBB. So, EGCG nanoparticles represent a promising treatment for AD. OBJECTIVES: This systematic review sought to assess the efficacy of EGCG nanoparticles against AD in rat/mouse models. METHODS: Study was conducted in accordance with PRISMA guidelines, and the protocol was registered in PROSPERO. Electronic databases were searched to discover relevant studies published up to October 2022. RESULTS: Two studies met the inclusion criteria out of 1338 and were included in this systematic review. Collectively, the results indicate that EGCG has a significant potential for reducing AD pathology and improving cognitive deficits in rat/mouse models. The formulated particles were in the nanometer range, as indicated by TEM, with good particle size control and stability. EGCG nanoparticles showed superior pharmacokinetic characteristics and improved blood-brain barrier permeability, and increased brain bioavailability compared to free EGCG. Additionally, nanoEGCG were more effective in modulating oxidative stress than free formulation and decreased AChE in the cortex and hippocampus of AlCl3-treated rats. CONCLUSION: This systematic analysis of the two studies included showed that EGCG nanoparticles are efficacious as a potential therapeutic intervention for AD in rat/mouse models. However, limited number of studies found indicates insufficient data in this research point that requires further investigation by experimental studies.

2.
AAPS PharmSciTech ; 23(4): 103, 2022 Apr 05.
Article En | MEDLINE | ID: mdl-35381906

Vaccination has produced a great improvement to the global health by decreasing/eradicating many infectious diseases responsible for significant morbidity and mortality. Thanks to vaccines, many infections affecting childhood have been greatly decreased or even eradicated (smallpox, measles, and polio). That is why great efforts are made to achieve mass vaccination against COVID-19. However, developed vaccines face many challenges with regard to their safety and stability. Moreover, needle phobia could prevent a significant proportion of the population from receiving vaccines. In this context, microneedles (MNs) could potentially present a solution to address these challenges. MNs represent single dose administration systems that do not need reconstitution or cold-chain storage. Being self-administered, pain-free, and capable of producing superior immunogenicity makes them a more attractive alternative. This review explores microneedles' types, safety, and efficacy in vaccine delivery. Preclinical and clinical studies for microneedle-based vaccines are discussed and patent examples are included.


COVID-19 , Vaccines , Administration, Cutaneous , Child , Drug Delivery Systems , Humans , Needles , Technology , Vaccination
3.
Drug Dev Ind Pharm ; 46(3): 395-402, 2020 Mar.
Article En | MEDLINE | ID: mdl-31996053

Objective: The aim of this study was to develop medicated chewing gum (MCG) formulation for taste-masked levocetirizine dihydrochloride (LCZ) that can provide fast drug release into the salivary fluid.Methods: Taste-masked LCZ was first prepared by two methods: cyclodextrin complexation using Kleptose or Captisol and formation of drug resin complex using Kyron T-154 or Kyron T-314 to overcome poor LCZ palatability. MCGs were then prepared using the taste-masked drug, gum base (Artica-T, Chicle, or Health In Gum (HIG), plasticizer (glycerol or soy lecithin at 6 or 8% of the final gum weight). The developed MCGs were evaluated for physical properties, content uniformity, and drug release. Best release MCGs were evaluated thermally to investigate the plasticizer effectiveness and for ex vivo chew out study to confirm adequate drug release. Drug bioavailability was determined for selected formula compared to commercial tablets.Results: Based on taste-masking efficiency, drug/Kleptose complex (1:3 molar ratio) was chosen for incorporation into chewing gums. Physical properties and drug release showed that gum base type, plasticizer type, and level affected not only physical properties but also drug release from MCGs. Thermal study showed decreased glass transition temperature (Tg) with increased plasticizer level. Chew out study confirmed almost complete drug release after a few minutes of chewing. Pharmacokinetic results showed shorter tmax (0.585 vs. 1.375 h) and higher Cmax (0.113 vs. 0.0765 µg/mL) for MCGs than conventional tablets.Conclusion: Results provided evidence that MCGs could be a better alternative to conventional tablet formulations with improved bioavailability and enhanced palatability.


Cetirizine/administration & dosage , Chewing Gum , Excipients/chemistry , Histamine H1 Antagonists, Non-Sedating/administration & dosage , Biological Availability , Cetirizine/chemistry , Cetirizine/pharmacokinetics , Chemistry, Pharmaceutical , Drug Liberation , Histamine H1 Antagonists, Non-Sedating/chemistry , Histamine H1 Antagonists, Non-Sedating/pharmacokinetics , Humans , Plasticizers/chemistry , Saliva/metabolism , Tablets , Taste , Vitrification , beta-Cyclodextrins/chemistry
...