Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(31): 22408-22417, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39010916

RESUMEN

Herein, the potential of ZO3 and ZF2 aerogen-comprising molecules (where Z = Ar, Kr, and Xe) to engage in σ-, lp-, and π-hole site-based interactions was comparatively studied using various ab initio computations. For the first time, a premier in-depth elucidation of the external electric field (EEF) influence on the strength of the σ-, lp-, and π-hole site-based interactions within the ZO3/ZF2⋯NH3 and ⋯NCH complexes was addressed using oriented EEF with disparate magnitude. Upon the energetic features, σ-hole site-based interactions were noticed with the most prominent preferability in comparison to lp- and π-hole analogs. This finding was ensured by the negative interaction energy values of -11.65, -3.50, and -2.74 kcal mol-1 in the case of σ-, lp-, and π-hole site-based interactions within the XeO3⋯ and XeF2⋯NH3 complexes, respectively. Detailedly, the strength of the σ- and lp-hole site-based interactions directly correlated with the atomic size of the aerogen atoms and the magnitude of the positively oriented EEF. Unexpectedly, an irregular correlation was noticed for the interaction energies of the π-hole site-based interactions with the size of the π-hole. Interestingly, the π-hole site-based interactions within Kr-comprising complexes exhibited higher negative interaction energies than the Ar- and Xe-comprising counterparts. Notwithstanding, a direct proportion between the interaction energies of the π-hole site-based interactions and π-hole size was obtained by employing EEF along the positive orientation with high strength. The present outcomes would be a fundamental basis for forthcoming progress in studying the σ-, lp-, and π-hole site-based interactions within aerogen-comprising complexes and their pertinent applications in materials science and crystal engineering.

2.
ACS Omega ; 9(9): 10391-10399, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463322

RESUMEN

σ-Hole site-based interactions in the trigonal bipyramidal geometrical structure of hypervalent pnicogen, halogen, and aerogen-bearing molecules with pyridine and NCH Lewis bases (LBs) were comparatively examined. In this respect, the ZF5···, XF3O2···, and AeF2O3···LB complexes (where Z = As, Sb; X = Br, I; Ae = Kr, Xe; and LB = pyridine and NCH) were investigated. The electrostatic potential (EP) analysis affirmations outlined the occurrence of σ-holes on the systems under consideration with disparate magnitudes that increased according to the following order: AeF2O3 < XF3O2 < ZF5. In line with EP outcomes, the proficiency of σ-hole site-based interactions increased as the atomic size of the central atom increased with a higher favorability for the pyridine-based complexes over NCH-based ones. The interaction energy showed the most favorable negative values of -35.97, -44.53, and -56.06 kcal/mol for the XeF2O3···, IF3O2···, and SbF5···pyridine complexes, respectively. The preferentiality pattern of the studied interactions could be explained as a consequence of (i) the dramatic rearrangement of ZF5 molecules from the trigonal bipyramid geometry to the square pyramidal one, (ii) the significant and tiny deformation energy in the case of the interaction of XF3O2 molecules with pyridine and NCH, respectively, and (iii) the absence of geometrical deformation within the AeF2O3···pyridine and ···NCH complexes other than the XeF2O3···pyridine one. Quantum theory of atoms in molecules and noncovalent interaction index findings reveal the partially covalent nature of most of the investigated interactions. Symmetry-adapted perturbation theory affirmations declared that the electrostatic component was the driving force beyond the occurrence of the considered interactions. The obtained findings will help in improving our understanding of the effect of geometrical deformation on intermolecular interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA