Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Drug Dev Res ; 84(8): 1664-1698, 2023 Dec.
Article En | MEDLINE | ID: mdl-37661648

New thiazole, thiazolopyrimidine, and thiazolotriazine derivatives 3-12 and 14a-f were synthesized. The newly synthesized analogs were tested for in vitro antitumor activity against HepG2, HCT-116, MCF-7, HeP-2, and Hela cancer cells. Results indicated that compound 5 displayed the highest potency toward the tested cancer cells. Compound 11b possessed enhanced effectiveness over MCF-7, HepG2, HCT-116, and Hela cancer cells. In addition, compounds 4 and 6 showed promising activity toward HCT-116, MCF-7, and Hela cancer cells and eminent activity against HepG2 and HeP-2 cells. Moreover, compounds 3-6 and 11b were tested for their capability to inhibit vascular endothelial growth factor receptor-2 (VEGFR-2) activity. The obtained results showed that compound 5 displayed significant inhibitory activity against VEGFR-2 (half-maximal inhibitory concentration [IC50 ] = 0.044 µM) comparable to sunitinib (IC50 = 0.100 µM). Also, the synthesized compounds 3-6 and 11b were subjected to in vitro cytotoxicity tests over WI38 and WISH normal cells. It was found that the five tested compounds displayed significantly lower cytotoxicity than doxorubicin toward normal cell lines. Cell cycle analysis proved that compound 5 induces cell cycle arrest in the S phase for HCT-116 and Hela cancer cell lines and in the G2/M phase for the MCF-7 cancer cell line. Moreover, compound 5 induced cancer cell death through apoptosis accompanied by a high ratio of BAX/BCL-2 in the screened cancer cells. Furthermore, docking results revealed that compound 5 showed the essential interaction bonds with VEGFR-2, which agreed with in vitro enzyme assay results. In silico studies showed that most of the analyzed compounds complied with the requirements of good oral bioavailability with minimal toxicity threats in humans.


Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Humans , Molecular Structure , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism , Thiazoles/pharmacology , Vascular Endothelial Growth Factor A , Cell Proliferation , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , MCF-7 Cells , Protein Kinase Inhibitors/pharmacology , Molecular Docking Simulation , Drug Design
2.
Bioorg Chem ; 81: 299-310, 2018 12.
Article En | MEDLINE | ID: mdl-30172111

New thiazolopyrimidine and dithiazolopyrimidinone derivatives 2-11 were synthesized and estimated for antimicrobial activity against S. aureus, B. cereus, E. coli, C. albicans, A. fumigatus and A. terreus. The attained results proved that 4, 8a and 11g have significant effectiveness against S. aureus and B. cereus. On the other hand, 7, 10b, 10c and 11h exhibited prominent activity against B. cereus, whereas 8a, 10b and 11g were proved to be active against E. coli. From another point of view, 4 and 8a exhibited promising efficacy against A. fumigatus and A. terreus; moreover, 8a showed outstanding efficacy against C. albicans. Quorum-sensing inhibitory activity of the new compounds was esteemed against C. violaceum, where 7, 8a, 9b, 10a-c, 11d and 11g have acceptable efficacy. In vitro antitumor efficacy of the same compounds against HepG2, HCT-116 and MCF-7 cancer cell lines was also tested. Compounds 4 and 11h showed enhanced effectiveness against the three cell lines, whereas 10b displayed eminent activity against HCT-116 and MCF-7 cells. Moreover, 11a was found to have outstanding activity against MCF-7 cells, while 11i showed promising efficacy against HepG2 cells. The in vitro active antitumor compounds were evaluated for in vivo antitumor effectiveness against EAC in mice, as well as in vitro cytotoxicity against WI38 and WISH normal cells. Results manifested that 4 has the strongest in vivo activity, and that all investigated analogs are less cytotoxic than 5-FU against both normal cell lines. DNA-binding affinity of the active compounds was examined, where 4, 8a, 10c, 11d and 11g,h displayed strong affinity. In silico studies proved that majority of the analyzed compounds are in conformity with the optimum needs for good oral absorption.


Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Pyrimidinones/pharmacology , Quorum Sensing/drug effects , Thiazoles/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Aspergillus fumigatus/drug effects , Bacillus cereus/drug effects , Candida albicans/drug effects , Cell Line, Tumor , Chromobacterium/drug effects , Drug Screening Assays, Antitumor , Escherichia coli/drug effects , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Pyrimidinones/toxicity , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/toxicity
...