Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 16466, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777535

RESUMEN

This work responds to what was reported in various audio-visual media channels and to queries and explanations from individuals and local residents on the causes of gaseous and thermal emissions from the Earth near the vicinity of the village of Al-Hindaw in Dakhla city, New Valley Governorate, Egypt. At the location of the fume exit area, magnetic, seismic, and electromagnetic geophysical investigations were carried out to identify the factor(s) responsible for the event in question. Rock samples were collected and studied geochemically and radiographically to assess their chemical compositions, as well as the quantity of organic chemicals that may have contributed to the burning and temperature increase. In light of the results of the geochemical and geophysical research, it is believed that the self-ignitions are the result of near-surface reactions and oxidation instead of volcanic activity, such as the presence of magma or other comparable phenomena.

2.
Heliyon ; 8(1): e08776, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35146154

RESUMEN

Based upon gravity measurements and calculations, the depth of the African continental crust is estimated. Taking as constraints the mass and radius of earth, and measured gravity, this theoretical method explores the use of gravitational potential to calculate the absolute gravity at three locations in Africa (e.g., Cape Town at latitude -34o, central Africa at latitude 0, and Benghazi at latitude 32o). The computational method uses as input a continental crust density ρ1 = 2.65-2.75 g/cm3 while compromising the oceanic crust density ρ2 to maintain the average crust density of the planet fixed at <ρ12> = 2.60 g/cm3. Crustal depth is assumed uniform around the earth and kept as a free parameter to adjust for the best fitting of gravity but using values of less than 100 km. A solid angle αo is a solid angle whose vertex is at the center of earth used to separate continental and oceanic crusts (αo = 10o, 20o, 35o). The results obtained for the continental crust were H = 36 km near continental edges at both Benghazi and Cape Town, whereas H = 44.4 km at the center of continent. These results are in excellent agreement with those reported by Tedla and coworkers (H = 39 ± 5 km) using an Euler deconvolution method. Our theoretical results from the developed code are also corroborated by results of numerical forward modeling supporting our code's reliability for further geoscience explorations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...