Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 511-526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054788

RESUMEN

The dietary effects of the green microalga Tetraselmis suecica (TS) on the growth, digestive enzymes, immune and antioxidant responses, genes expression, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings were investigated. This microalga was mixed with the diet' ingredients at doses of 0.0 (the control), 5, 10, 15, and 20 g/kg diet and then fed to fish daily for 84 days. After the feeding trial, fish were experimentally challenged with Aeromonas sobria, infection and fish mortalities were recorded for another 10 days. Dietary TS significantly (p < 0.05) enhanced growth, digestive enzymes activities, and blood proteins, particularly at the level of 15 g/kg diet. Feeding the fish on 15 TS/kg feed exhibited highest mRNA expressions of GH and IGF-1 genes as well as SOD, CAT, and GPx genes compared to other TS groups. Moreover, highest levels of hepatic antioxidant and immune indices were found in the treatment of 15 g TS/kg feed. Significant downregulation of IL-1ß and IL-8 genes expression and significant upregulation of IL-10 gene expression were observed in TS-fed fish, principally in fish groups fed on 15-20 g TS/kg feed. Conversely, hepatic malondialdehyde levels, blood glucose, and the activities of transaminases (ALT and AST) were significantly (p < 0.05) decreased in fish fed with 15-20 g TS/kg diet. Serum bactericidal activity against A. sobria was significantly higher in TS-fed fish groups, and its highest levels were found in treatments of 15-20 g/kg diet. Of interest, the survival rates of fish groups fed diets with 10-20 g TS/kg feed were higher after the challenge with A. sobria infection than the control group. Accordingly, we can conclude that supplementing fish diets with a 15 g TS/kg diet enhanced the growth, antioxidant and immune activities, and resistance of Nile tilapia fingerlings to possible A. sobria infection.


Asunto(s)
Aeromonas , Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Microalgas , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Citocinas/metabolismo , Cíclidos/metabolismo , Dieta/veterinaria , Inflamación/veterinaria , Alimentación Animal/análisis , Infecciones por Bacterias Gramnegativas/veterinaria
2.
Fish Shellfish Immunol ; 142: 109126, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37777101

RESUMEN

The antibacterial activity of aqueous (AE) or ethanolic extracts (EE) of caper (Capparis spinosa) against Streptococcus agalactiae was evaluated in vitro. Both caper extracts showed antagonistic activity against S. agalactiae and the inhibition zones in case of ethanolic extracts were larger than those of aqueous ones. Additionally, TEM investigations show that S. agalactiae cells treated with both C. spinosa extracts were damaged and degraded and this damage was greater in case of ethanolic extract. Another study was done to assess the promotion effects of dietary caper (C. spinosa) extracts on growth, antioxidant and immune activity, and inflammation cytokine responses of Nile tilapia (Oreochromis niloticus) and its resistance to S. agalactiae infection. However, fish (40 ± 2 g) were fed on diets containing 1.0 and 2.0 g/kg feed of each caper extract as well as the control group (free of caper) for 6 weeks. Fish were intraperitoneally injected (IP) with Streptococcus agalactiae at the end of the feeding trial, and fish mortality was tracked for additional ten days. Compared with other treatments, fish fed on 2.0 g EE/kg feed had higher counts of white and red blood cells as well as higher hemoglobin levels accompanied with lower AST and ALT activities. Antioxidant (superoxide dismutase and catalase activities) and immune, total protein, globulin, lysozyme, and immunoglobulin M) indices were increased along with significant decline in MDA levels in both caper extracts treated fish groups compared to the control group. Significant promotion in fish growth was affected positively with the increase in both caper extracts; particularly, the larger fish growth was observed in the treatment of 2.0 g EE/kg feed. Expressions of IL-1ß and IL-8 were declined; meanwhile levels of IL-10, SOD and CAT genes were upregulated in fish fed on 2.0 g EE/kg feed compared to other groups. After being challenged with S. agalactiae infection, fish survival was considerably (P < 0.05) greater in fish groups that fed on diets with caper extracts; particularly 2.0 g EE/kg feed (75%); while all fish fed on the control one were dead. According to these findings, the antioxidant and immune response of Nile tilapia fingerlings is stimulated by ethanolic extract of caper (2.0 g/kg feed), which also enhanced the growth performance and fish resistance to S. agalactiae infection.


Asunto(s)
Capparis , Cíclidos , Enfermedades de los Peces , Animales , Antioxidantes , Suplementos Dietéticos , Streptococcus agalactiae/fisiología , Citocinas , Dieta/veterinaria , Inflamación , Alimentación Animal/análisis , Resistencia a la Enfermedad
3.
Int J Vet Sci Med ; 11(1): 38-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37179529

RESUMEN

Recently, nanoparticles have attracted attention as a preventive tool for certain infectious diseases affecting fish in aquaculture. Furthermore, freshwater fishes are frequently vulnerable to summer mass morality caused by Aeromonas bacteria. In this regard, we focused on the evaluation of the in vitro and in vivo antimicrobial activity of chitosan (CNPs) and silver (AgNPs) nanoparticles against Aeromonas hydrophila subsp. hydrophila. CNPs and AgNPs were prepared at a mean particle size of 9.03 and 12.8 nm and a charge equalled+36.4 and -19.3 mV for CNPs and AgNPs, respectively. A. hydrophila subsp. hydrophila, Aeromonas caviae, and Aeromonas punctata were retrieved and identified by traditional and molecular techniques. The sensitivity of the obtained bacteria to eight different antibiotic discs was also tested. The antibiotic sensitivity studies revealed the presence of multidrug-resistant (MDR) Aeromonas species (spp.). The bacterium that showed the highest multidrug resistance against the tested antibiotic discs was Aeromonas hydrophila subsp. hydrophila. Therefore, CNPs and AgNPs were in vitro tested against the isolated bacterium and exhibited inhibition zones of 15 and 25 mm, respectively. TEM images also showed that CNPs and AgNPs had an antagonistic action against the same bacterium causing loss of architecture and bacterial death.

4.
Fish Shellfish Immunol ; 135: 108628, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36822383

RESUMEN

A sixty-day feeding trial was conducted to assess the effects of silver nanoparticles (AgNPs) and chitosan nanoparticles (CNPs) on the growth and immunity of Nile tilapia (Oreochromis niloticus), compared with the control group. CNPs and AgNPs were green synthesized and added to a control diet (30% crude protein) at levels of 2.0 g CNPs/kg diet and 1.0 mg AgNPs/kg diet. One hundred and eighty fish (101 ± 3.98 g) were randomly distributed into nine fiberglass tanks (200 cm × 200 cm x 100 cm, twenty fish each) to represent three equal groups (60 fish per group). After one and two months of the feeding trial, parameters of water quality, growth indices, hematology, and liver and kidney biomarkers were evaluated. At the end of the experiment, 10 fish from each group were challenged experimentally via the intraperitoneal injection with Pseudomonas fluorescence and fish mortality was observed for further ten days. Then, specimens from the liver, kidney, spleen, and anterior intestine were examined to assess the histopathological alterations. Incorporating a 2.0 g CNPs/kg diet was a promising growth enhancer; however, a 1.0 mg AgNPs/kg diet had no effects on tilapia performance. Furthermore, AgNPs appeared to reduce water pollution, leading to water filtration via decreasing both total dissolved solids (TDS) and electrical conductivity (EC). A significant role of AgNPs in improving tilapia's erythrogram (RBCs number and Hb concentration) was evident. Compared with the control group, both groups of CNPs and AgNPs improved non-specific immune parameters and showed defense effects against P. fluorescence. The fish mortality after P. fluorescence infection in CNPs and AgNPs-fed fish groups revealed significant decreases (P < 0.05) of 10% and 25%; respectively, while the control group exhibited a mortality rate of 40%. The current investigation evoked that using dietary CNPs (2.0 g/kg feed) as an antibacterial agent against P. fluorescence infection in Nile tilapia culture was better than dietary AgNPs (1.0 mg/kg diet) which, induced cells inflammation causing tissues necrosis.


Asunto(s)
Quitosano , Cíclidos , Enfermedades de los Peces , Nanopartículas del Metal , Animales , Alimentación Animal/análisis , Antibacterianos/farmacología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Fluorescencia , Pseudomonas , Plata
5.
Saudi J Biol Sci ; 29(3): 1298-1305, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280558

RESUMEN

Pathogens isolated from fish appear to possess considerable antimicrobial resistance and represent a problem for the economy and public health. Natural antimicrobial substitutes to traditional antibiotics represent an essential tool in the fight against antibiotic resistance. Nanotechnology has shown considerable potential in different research fields, and the antimicrobial properties of silver nanoparticles are known. Silver has been used for medical purposes since ancient times because of its bactericidal properties, and the highly reactive surfaces of silver nanoparticles (AgNPs) indicate that they might have a function in antimicrobial applications. This work aimed to study the antimicrobial properties of biologically produced AgNPs from Origanum vulgare leaves compared to chemically produced AgNPs. Both types were characterized by UV-vis spectrophotometry, TEM, and dynamic light scattering and tested against three bacterial strains (Streptococcus agalactiae, and Aeromonas hydrophila, both isolated from Nile tilapia and Vibrio alginolyticus, isolated from sea bass) and three fungal strains (Aspergillus flavus, Fusarium moniliforme, and Candida albicans, all isolated from Nile tilapia). Disk diffusion test and evaluation of ultrastructure changes of tested microorganisms treated with AgNPs by transmission electron microscopy were performed. Moreover, the hemolytic properties of AgNPs were studied on chicken and goat red blood cells. The results obtained declare that the green biological production of silver nanoparticles is safer and more effective than the chemical one; moreover, AgNPs have interesting dose-dependent antimicrobial properties, with better results for biologically produced ones; their effectiveness against tested bacterial and fungal strains opens the way to their use to limit fish diseases, increase economy and improve human health.

6.
Fish Shellfish Immunol ; 113: 35-41, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33785470

RESUMEN

The present study was performed to evaluate the toxic effects of feed-born zearalenone (ZEN) on antioxidative status, immunity, transcriptomic responses of European seabass, and the modulating roles of dietary garlic and/or chitosan powders. Fish (30.7 ± 0.6 g) were randomly arranged in five experimental groups (in triplicates), whereas the first group was fed on the control diet only without any supplements (control), and the second group was fed on the basal diet contaminated with ZEN (0.725 mg/kg diet). Three other groups were fed on ZEN-contaminated diets and simultaneously supplemented with garlic powder (GP) (30 g/kg diet) (ZEN + GP), chitosan powder (CH) (10 g/kg diet) (ZEN + CH), and a mixture of GP and CH (ZEN + GP + CH). Fish were fed on the experimental diets thrice a day for 4 weeks. Two-way ANOVA revealed a gradual decline in serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in the ZEN group reaching their lowest levels at the 4th week. Contrariwise, malondialdehyde levels were markedly higher in the ZEN group reaching their highest values at the end of the experiment. A significant decline of total immunoglobulins (P < 0.05) was observed in the serum of the ZEN group, especially after the 4th week. Moreover, significant down-regulation of interleukin-4 (IL-4) and interleukin 1 beta (IL-1ß) genes (P < 0.05) alongside significant up-regulation of tumor necrosis factor-alpha (TNF-α) and heat shock protein 70 (HSP70) genes (P < 0.05) in the liver and anterior kidney of ZEN-intoxicated group. Interestingly, dietary supplementation with GP and CH significantly attenuated ZEN-induced oxidative stress, immunosuppression, and modulated transcriptomic responses of ZEN-exposed fish. Moreover, combined dietary supplementation of both feed additives resulted in better effects than each one alone.


Asunto(s)
Antioxidantes/metabolismo , Lubina/inmunología , Quitosano/metabolismo , Citocinas/genética , Ajo/química , Proteínas HSP70 de Choque Térmico/genética , Inmunidad Innata , Zearalenona/toxicidad , Alimentación Animal/análisis , Animales , Quitosano/administración & dosificación , Citocinas/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Inmunidad Innata/efectos de los fármacos , Distribución Aleatoria , Transcripción Genética
7.
Fish Physiol Biochem ; 45(6): 1907-1917, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31350647

RESUMEN

A feeding trial was conducted to assess the effect of inclusion of dried powder of purslane, Portulaca oleracea, leaves in diets on growth, antioxidant, and immunological responses of Nile tilapia, Oreochromis niloticus, as well as its resistance to pathogenic bacteria, Aeromonas hydrophila. Fresh leaves of purslane were collected, dried, and mixed thoroughly with a basal fish diet at levels of 0.0 (control), 1.0, 2.0, and 3%. Fish (18.2 ± 0.4 g) fed one of the experimental diets up to apparent satiation twice a day for 7 weeks. At the end of the feeding trial, fish were intraperitoneally injected with pathogenic bacteria, A. hydrophila, and fish mortalities were observed and recorded up to 10 days post-challenge. Fish growth, weight gain, and specific growth rate were retarded significantly with increasing purslane levels in fish diets as compared to the control group. On the other hand, significant (P < 0.05) increases in plasmatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities accompanied with significant decreases in malondialdehyde (MDA) were observed with increasing purslane levels in fish diets. The respiratory burst (RB) activity and lysozyme value were significantly enhanced, while nitrous oxide (NO) decreased significantly with increasing purslane levels in fish diets over those of the control fish. After 10 days of the bacterial infection, no significant changes of MDA and SOD levels were observed, whereas CAT and GPX activities were significantly elevated. Additionally, RB and lysozyme activities were lower, while NO levels were elevated more than those before bacterial infection. Fish survival before and after bacterial infection was significantly affected by dietary purslane supplements, bacterial infection, and their interaction where dietary purslane improved the fish resistance to A. hydrophila infection in a dose-dependent manner. Purslane-fed fish showed highest relative percent of survival especially at an inclusion level of 3% (81.25%), whereas the control fish group showed lowest relative percent of survival (0.0%).


Asunto(s)
Cíclidos/inmunología , Dieta/veterinaria , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunización , Portulaca , Aeromonas hydrophila , Animales , Catalasa/metabolismo , Suplementos Dietéticos , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Inmunidad Innata , Malondialdehído/metabolismo , Hojas de la Planta , Polvos , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...