Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(18): 20477-20487, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737064

RESUMEN

The hydroethanol (70%) extracts of three Lobelia species (L. nicotianifolia, L. sessilifolia, and L. chinensis) were analyzed using LC-ESI-MS/MS. Forty-five metabolites were identified, including different flavonoids, coumarin, polyacetylenes, and alkaloids, which were the most abundant class. By applying Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) based on LC-ESI-MS/MS analysis, the three species were completely segregated from each other. In addition, the three Lobelia extracts were tested for their antioxidant activities using a DPPH assay and as antidiabetic agents against α-glycosidase and α-amylase enzymes. L. chinensis extract demonstrated significant antioxidant activity with an IC50 value of 1.111 mg/mL, while L. nicotianifolia showed mild suppressing activity on the α-glycosidase activity with an IC50 value of 270.8 µg/mL. A molecular simulation study was performed on the main compounds to predict their potential antidiabetic activity and pharmacokinetic properties. The molecular docking results confirmed the α-glycosidase inhibitory activity of the tested compounds, as seen in their binding mode to the key amino acid residues at the binding site compared to that of the standard drug acarbose. Furthermore, the predictive ADMET results revealed good pharmacokinetic properties of almost all of the tested compounds. The biological evaluation results demonstrated the promising activity of the tested compounds, aligned with the in silico results.

2.
Pathol Res Pract ; 246: 154529, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196470

RESUMEN

Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-ß signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.


Asunto(s)
Neoplasias Esofágicas , MicroARNs , Humanos , MicroARNs/genética , Neoplasias Esofágicas/patología , Vía de Señalización Wnt/genética , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica
3.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903440

RESUMEN

The genus Moricandia (Brassicaceae) comprises about eight species that were used in traditional medicine. Moricandia sinaica is used to alleviate certain disorders such as syphilis and exhibits analgesic, anti-inflammatory, antipyretic, antioxidant, and antigenotoxic properties. Throughout this study, we aimed to figure out the chemical composition of lipophilic extract and essential oil obtained from M. sinaica aerial parts using GC/MS analysis, as well as their cytotoxic and antioxidant activities correlated with the major detected compounds' molecular docking. The results revealed that both the lipophilic extract and the oil were found to be rich in aliphatic hydrocarbons, accounting for 72.00% and 79.85%, respectively. Furthermore, the lipophilic extract's major constituents are octacosanol, γ-sitosterol, α-amyrin, ß-amyrin acetate, and α-tocopherol. Contrarily, monoterpenes and sesquiterpenes accounted for the majority of the essential oil. The essential oil and the lipophilic extract of M. sinaica showed cytotoxic properties towards human liver cancer cells (HepG2) with IC50 values of 126.65 and 220.21 µg/mL, respectively. The lipophilic extract revealed antioxidant activity in the DPPH assay with an IC50 value of 2679 ± 128.13 µg/mL and in the FRAP assay, moderate antioxidant potential was expressed as 44.30 ± 3.73 µM Trolox equivalent/mg sample. The molecular docking studies revealed that ꞵ-amyrin acetate, α -tocopherol, γ-sitosterol, and n-pentacosaneachieved the best docking scores for NADPH oxidase, phosphoinositide-3 kinase, and protein kinase B. Consequently, M. sinaica essential oil and lipophilic extract can be employed as a viable management strategy for oxidative stress conditions and the formulation of improved cytotoxic treatment regimens.


Asunto(s)
Antineoplásicos , Aceites Volátiles , Humanos , Aceites Volátiles/química , Antioxidantes/química , Simulación del Acoplamiento Molecular , Extractos Vegetales
4.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838706

RESUMEN

The chronic nature of diabetes mellitus motivates the quest for novel agents to improve its management. The scarcity and prior uncontrolled utilization of medicinal plants have encouraged researchers to seek new sources of promising compounds. Recently, endophytes have presented as eco-friendly leading sources for bioactive metabolites. This article reviewed the endophytic fungi associated with Morus species and their isolated compounds, in addition to the biological activities tested on their extracts and chemical constituents. The relevant literature was collected from the years 2008-2022 from PubMed and Web of Science databases. Notably, no antidiabetic activity was reported for any of the Morus-associated endophytic fungal extracts or their twenty-one previously isolated compounds. This encouraged us to perform an in silico study on the previously isolated compounds to explore their possible antidiabetic potential. Furthermore, pharmacokinetic and dynamic stability studies were performed on these compounds. Upon molecular docking, Colletotrichalactone A (14) showed a promising antidiabetic activity due to the inhibition of the α-amylase local target and the human sodium-glucose cotransporter 2 (hSGT2) systemic target with safe pharmacokinetic features. These results provide an in silico interpretation of the possible anti-diabetic potential of Morus endophytic metabolites, yet further study is required.


Asunto(s)
Endófitos , Hongos , Hipoglucemiantes , Morus , Humanos , Endófitos/química , Hongos/química , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Morus/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA