Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Methods ; 4(1): 100691, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38215761

RESUMEN

Therapeutic development for mental disorders has been slow despite the high worldwide prevalence of illness. Unfortunately, cellular and circuit insights into disease etiology have largely failed to generalize across individuals that carry the same diagnosis, reflecting an unmet need to identify convergent mechanisms that would facilitate optimal treatment. Here, we discuss how mesoscale networks can encode affect and other cognitive processes. These networks can be discovered through electrical functional connectome (electome) analysis, a method built upon explainable machine learning models for analyzing and interpreting mesoscale brain-wide signals in a behavioral context. We also outline best practices for identifying these generalizable, interpretable, and biologically relevant networks. Looking forward, translational electome analysis can span species and various moods, cognitive processes, or other brain states, supporting translational medicine. Thus, we argue that electome analysis provides potential translational biomarkers for developing next-generation therapeutics that exhibit high efficacy across heterogeneous disorders.


Asunto(s)
Conectoma , Trastornos Mentales , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Conectoma/métodos , Aprendizaje Automático
2.
Neuron ; 110(19): 3091-3105.e9, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35987206

RESUMEN

A major pathological hallmark of neurodegenerative diseases, including Alzheimer's, is a significant reduction in the white matter connecting the two cerebral hemispheres, as well as in the correlated activity between anatomically corresponding bilateral brain areas. However, the underlying circuit mechanisms and the cognitive relevance of cross-hemispheric (CH) communication remain poorly understood. Here, we show that novelty discrimination behavior activates CH neurons and enhances homotopic synchronized neural oscillations in the visual cortex. CH neurons provide excitatory drive required for synchronous neural oscillations between hemispheres, and unilateral inhibition of the CH circuit is sufficient to impair synchronous oscillations and novelty discrimination behavior. In the 5XFAD and Tau P301S mouse models, CH communication is altered, and novelty discrimination is impaired. These data reveal a hitherto uncharacterized CH circuit in the visual cortex, establishing a causal link between this circuit and novelty discrimination behavior and highlighting its impairment in mouse models of neurodegeneration.


Asunto(s)
Hipocampo , Corteza Visual , Animales , Modelos Animales de Enfermedad , Hipocampo/fisiología , Interneuronas/fisiología , Ratones , Neuronas/fisiología
3.
Sci Transl Med ; 13(618): eabd7695, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731014

RESUMEN

Recent increases in human longevity have been accompanied by a rise in the incidence of dementia, highlighting the need to preserve cognitive function in an aging population. A small percentage of individuals with pathological hallmarks of neurodegenerative disease are able to maintain normal cognition. Although the molecular mechanisms that govern this neuroprotection remain unknown, individuals that exhibit cognitive resilience (CgR) represent a unique source of therapeutic insight. For both humans and animal models, living in an enriched, cognitively stimulating environment is the most effective known inducer of CgR. To understand potential drivers of this phenomenon, we began by profiling the molecular changes that arise from environmental enrichment in mice, which led to the identification of MEF2 transcription factors (TFs). We next turned to repositories of human clinical and brain transcriptomic data, where we found that the MEF2 transcriptional network was overrepresented among genes that are most predictive of end-stage cognition. Through single-nucleus RNA sequencing of cortical tissue from resilient and nonresilient individuals, we further confirmed up-regulation of MEF2C in resilient individuals to a subpopulation of excitatory neurons. Last, to determine the causal impact of MEF2 on cognition in the context of neurodegeneration, we overexpressed Mef2a/c in the PS19 mouse model of tauopathy and found that this was sufficient to improve cognitive flexibility and reduce hyperexcitability. Overall, our findings reveal a previously unappreciated role for MEF2 TFs in promoting CgR, highlighting their potential as biomarkers or therapeutic targets for neurodegeneration and healthy aging.


Asunto(s)
Factores de Transcripción MEF2 , Enfermedades Neurodegenerativas , Animales , Encéfalo/metabolismo , Cognición/fisiología , Redes Reguladoras de Genes , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Enfermedades Neurodegenerativas/genética
4.
J Neurosci ; 40(3): 585-604, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31767678

RESUMEN

Study of the neural deficits caused by mismatched binocular vision in early childhood has predominantly focused on circuits in the primary visual cortex (V1). Recent evidence has revealed that neurons in mouse dorsolateral geniculate nucleus (dLGN) can undergo rapid ocular dominance plasticity following monocular deprivation (MD). It remains unclear, however, whether the long-lasting deficits attributed to MD during the critical period originate in the thalamus. Using in vivo two-photon Ca2+ imaging of dLGN afferents in superficial layers of V1 in female and male mice, we demonstrate that 14 d MD during the critical period leads to a chronic loss of binocular dLGN inputs while sparing response strength and spatial acuity. Importantly, MD leads to profoundly mismatched visual tuning properties in remaining binocular dLGN afferents. Furthermore, MD impairs binocular modulation, reducing facilitation of responses of both binocular and monocular dLGN inputs during binocular viewing. As predicted by our findings in thalamic inputs, Ca2+ imaging from V1 neurons revealed spared spatial acuity but impaired binocularity in L4 neurons. V1 L2/3 neurons in contrast displayed deficits in both binocularity and spatial acuity. Our data demonstrate that critical-period MD produces long-lasting disruptions in binocular integration beginning in early binocular circuits in dLGN, whereas spatial acuity deficits first arise from circuits further downstream in V1. Our findings indicate that the development of normal binocular vision and spatial acuity depend upon experience-dependent refinement of distinct stages in the mammalian visual system.SIGNIFICANCE STATEMENT Abnormal binocular vision and reduced acuity are hallmarks of amblyopia, a disorder that affects 2%-5% of the population. It is widely thought that the neural deficits underlying amblyopia begin in the circuits of primary visual cortex. Using in vivo two-photon calcium imaging of thalamocortical axons in mice, we show that depriving one eye of input during a critical period in development chronically impairs binocular integration in thalamic inputs to primary visual cortex. In contrast, visual acuity is spared in thalamic inputs. These findings shed new light on the role for developmental mechanisms in the thalamus in establishing binocular vision and may have critical implications for amblyopia.


Asunto(s)
Privación Sensorial/fisiología , Tálamo/crecimiento & desarrollo , Tálamo/fisiología , Visión Binocular/fisiología , Visión Monocular/fisiología , Visión Ocular/fisiología , Ambliopía/fisiopatología , Animales , Mapeo Encefálico , Femenino , Cuerpos Geniculados/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Percepción Espacial , Agudeza Visual/fisiología , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...