Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(38): 89690-89704, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37458881

RESUMEN

Waste printed circuit boards (WPCBs) contain a plethora of valuable metals, considered an attractive secondary resource. In the current research, a hydrometallurgical process combined ammonia/ammonium chloride leaching and reduction (using L-ascorbic acid) to recover copper and its oxide (CuO) as nanosized particles from WPCBs was investigated. The results of leaching indicated that 96.7% of copper could be recovered at a temperature of 35 °C for a leaching duration of 2 h with ammonium chloride and ammonia concentration of 2 mol/L at a solid:liquid ratio of 1:10 g/cm3. The synthesized particles exhibit spherical and distorted sphere morphology with average particle size of 460 nm and 50 nm for Cu and CuO NPs, respectively. The antibacterial activity of Cu, CuO, and a (1:1) blend of both (Cu/CuO) has been examined against five different bacterial and fungal strains. The highest zone of inhibition was measured as 21.2 mm for Cu NPs toward Escherichia coli and 16.7 mm for Cu/CuO blend toward Bacillus cereus bacteria. The highest zone of inhibition was measured as 13 mm and 13.8 mm for Cu/CuO blend toward Fusarium proliferatum and Penicillium verrucosum fungi. Cu/CuO blend showed notable photocatalytic activity towards Rhodamine B dye under visible light irradiation with 96% degradation rate within 120 min. Using the process developed in this study, copper and its oxide as nanoparticles can be produced from WPCBs and used for multifunctional applications.


Asunto(s)
Residuos Electrónicos , Nanopartículas del Metal , Nanopartículas , Cobre/farmacología , Amoníaco , Cloruro de Amonio , Hongos , Antibacterianos/farmacología , Óxidos
2.
Biosensors (Basel) ; 12(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36551049

RESUMEN

Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Humanos , Técnicas Biosensibles/métodos
3.
J Environ Manage ; 312: 114956, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398697

RESUMEN

The presence of high concentrations of selenium ions in wastewater is considered an environmental problem. However, the mechanism of selenium ions (Se (IV)) removal by the adsorption process has not been investigated in-depth so far. Also, the recovery and conversion of the industrial waste materials into valuable materials is a vital issue. Therefore, in this study, zinc ferrite nanopowders are economically synthesized from steel-making wastes by co-precipitation method for investigating as adsorbents of selenium species. The produced nanopowders were annealed at 150, 300, 500, and 850 °C for 5 h to scrutinize the impact of annealing temperature on their crystallite size. The compositional, optical, and magnetic features of the nanopowders were defined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), UV-Vis. spectrophotometer along with vibrating sample magnetometer (VSM). Optical absorbance spectra were found characteristic due to the electronic structure of Fe3+ (3d5) considering the C3v local symmetry of Fe3+ ions. The prepared nanopowders demonstrated good adsorption capacity toward selenium ions (43.67 mg/g at pH 2.5) from an aqueous medium. Adsorption data were found fitting to Freundlich isotherm model. Thus, ZnFe2O4 can be recommended to effectively eliminate selenium ions from aqueous solutions.


Asunto(s)
Nanopartículas , Selenio , Contaminantes Químicos del Agua , Adsorción , Compuestos Férricos , Residuos Industriales , Iones , Aguas Residuales/análisis , Agua , Contaminantes Químicos del Agua/química , Zinc
4.
Environ Sci Pollut Res Int ; 29(38): 57964-57979, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35355191

RESUMEN

Inordinate levels of heavy metals in water sources have long been a matter of concern, posing serious environmental and public health risks. Adsorption, on the other hand, is a viable technique for removing heavy metals from water due to its high efficiency, low cost, and ease of operation. Blast furnace slag (BFS) is considered a cheap sorbent for the get rid of Co2+ and Pb2+ ions from aqueous media. The nonmodified slag is characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), N2 adsorption-desorption isotherms, energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), and zeta potential. The removal of Co2+ and Pb2+ ions was carried out using batch adsorption experiments from an aqueous medium. The influence of several variables as pH, contact time, adsorbent dose, temperature, and initial ions concentration was considered. The isotherm, kinetic, thermodynamic, and recyclability were also conducted. The maximum uptake capacity for Co2+ and Pb2+ was 43.8 and 30.2 mg g-1 achieved at pH 6 after 60 min contact time. The adsorption kinetics and isotherms of BFS for Co2+ and Pb2+ fitted well to Avrami and Freundlich models, respectively. The main adsorption mechanism between BFS and the metal ions was ion exchange. The regeneration of the used slag was studied for reuse many cycles. In terms of economics and scalability, nonmodified BFS treatment has great potential as a cost-effective adsorbent that could be used in water pollution treatment.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Iones/análisis , Hierro/análisis , Cinética , Plomo/análisis , Metales Pesados/análisis , Aguas Residuales/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
5.
Front Chem ; 8: 782, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110911

RESUMEN

For the past few decades, a plethora of nanoparticles have been produced through various methods and utilized to advance technologies for environmental applications, including water treatment, detection of persistent pollutants, and soil/water remediation, amongst many others. The field of materials science and engineering is increasingly interested in increasing the sustainability of the processes involved in the production of nanoparticles, which motivates the exploration of alternative inputs for nanoparticle production as well as the implementation of green synthesis techniques. Herein, we start by overviewing the general aspects of nanoparticle synthesis from industrial, electric/electronic, and plastic waste. We expand on critical aspects of waste identification as a viable input for the treatment and recovery of metal- and carbon-based nanoparticles. We follow-up by discussing different governing mechanisms involved in the production of nanoparticles, and point to potential inferences throughout the synthesis processes. Next, we provide some examples of waste-derived nanoparticles utilized in a proof-of-concept demonstration of technologies for applications in water quality and safety. We conclude by discussing current challenges from the toxicological and life-cycle perspectives that must be taken into consideration before scale-up manufacturing and implementation of waste-derived nanoparticles.

6.
Nanomaterials (Basel) ; 9(8)2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416119

RESUMEN

Solid-contact potentiometric ion-selective electrodes (SC-ISEs) for thallium determination have been designed using multiwall carbon nanotubes (MWCNTs) as the ion-to-electron transducer. Dispersed MWCNTs were drop-casted over a gold plate electrode. Two different crown ethers were used in the sensing membrane for the recognition of thallium (I). Sensorsbased on dibenzo-18-crown-6 (DB18C6) as a neutral carrier and NaTPB as an anionic additive exhibited a near Nernstian response of 57.3 mV/decade towards Tl+ ions over the activity range 4.5 × 10-6-7.0 × 10-4 M, with a limit of detection of 3.2 × 10-7 M. The time required to achieve 95% of the steadyequilibrium potential was <10 s. The complex formation constant (log ßML) between dibenzo-18-crown-6 and thallium (I) (i.e., 5.99) was measured using the sandwich membrane technique. The potential response was pH independent over the range 3.0-9.5. The introduction of MWCNTs as an electron-ion-transducer layer between gold plate and the sensing membrane lead to a smaller membrane resistance and a large double layer capacitance, which was proven using impedance spectra and chronopotentiometry (i.e., 114.9 ± 12 kΩ, 52.1 ± 3.3 pF, 200 ± 13.2 kΩ, and 50 ± 4.2 µF). Additionally, reduction ofthe water layer between the sensing membrane and the underlying conductor wastested. Thus, it is clear that MWCNTs can be used as a transducing layer in SC-ISEs. The proposed sensor was introduced as an indicator electrode for potentiometric titration of single and ternary mixtures of I-, Br-, and S2- anions.

7.
Environ Sci Pollut Res Int ; 25(17): 16533-16547, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29737485

RESUMEN

The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.


Asunto(s)
Residuos Electrónicos/análisis , Reciclaje/métodos , Egipto , Electrónica , Metales , Administración de Residuos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...