Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
J Med Chem ; 63(15): 8114-8133, 2020 08 13.
Article En | MEDLINE | ID: mdl-32648758

High-throughput screening has shown that Retro-1 inhibits ricin and Shiga toxins by diminishing their intracellular trafficking via the retrograde route, from early endosomes to the Golgi apparatus. To improve the activity of Retro-1, a structure-activity relationship (SAR) study was undertaken and yielded an analogue with a roughly 70-fold better half-maximal effective concentration (EC50) against Shiga toxin cytotoxicity measured in a cell protein synthesis assay.


Benzodiazepinones/chemistry , Benzodiazepinones/pharmacology , Shiga Toxins/antagonists & inhibitors , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , HeLa Cells , Humans , Protein Transport/drug effects , Protein Transport/physiology , Shiga Toxins/metabolism , Structure-Activity Relationship
2.
Chem Sci ; 9(23): 5132-5144, 2018 Jun 21.
Article En | MEDLINE | ID: mdl-29997865

The past seven years have witnessed the burgeoning of protein bioconjugation reactions highlighting aryl transition metal reagents as coupling partners. This new bioorthogonal organometallic chemistry, which sets the scene for stoichiometric processes in place of the catalytic procedures that developed in parallel, already enabled the forging of C-S and C-C bonds onto protein substrates, respectively in their native state or equipped with pre-installed non-natural terminal alkene or alkyne appendages. Although not yet applied to proteins, related transformations pointing to the creation of C-N bonds have, in addition, just been disclosed by targeting peptide lysine residues. Central to this research was the selection of ligands attached to the transition metal, in order to confer to metal complexes, not only their stability in aqueous medium, but also the desired chemoselectivity. We summarize here this body of work, which has already put in the limelight elaborated palladium and gold complexes equipped with biologically relevant appendages, such as fluorescent and affinity tags, as well as drug molecules. This research holds much promise, not only for the study of proteins themselves, but also for the design of new protein-based biotherapeutics, such as protein-drug conjugates or constrained analogs resulting from macrocyclisation reactions.

3.
Org Biomol Chem ; 15(36): 7518-7522, 2017 Sep 20.
Article En | MEDLINE | ID: mdl-28871293

A modular total synthesis of mycolactone A/B, the exotoxin produced by Mycobacterium ulcerans, has been achieved through the orchestration of several Pd-catalyzed key steps. While this route leads to a mixture of the natural product and its C12 epimer (4 : 1 ratio), this was inconsequential from the biological activity standpoint. Compared to the previously reported routes, this synthetic blueprint allows the late-stage modification of the toxin, as exemplified by the preparation of [22,22,22-2H3]-mycolactone A/B.


Macrolides/chemical synthesis , Catalysis , Macrolides/chemistry , Molecular Conformation , Palladium/chemistry
4.
Chimia (Aarau) ; 71(12): 836-840, 2017 Dec 01.
Article En | MEDLINE | ID: mdl-29289244

Buruli ulcer, classified as a neglected tropical disease by the World Health Organization, is caused by a mycobacterium which secretes a macrolidic exotoxin called mycolactone A/B. In this article, several synthetic strategies for the preparation of this toxin are discussed, highlighting the importance of total synthesis for the exploration of biological mechanism underpinning relevant human diseases.


Buruli Ulcer/etiology , Macrolides/chemical synthesis , Humans
5.
Chem Biol Interact ; 267: 96-103, 2017 Apr 01.
Article En | MEDLINE | ID: mdl-27712998

Medical countermeasures to treat biothreat agent infections require broad-spectrum therapeutics that do not induce agent resistance. A cell-based high-throughput screen (HTS) against ricin toxin combined with hit optimization allowed selection of a family of compounds that meet these requirements. The hit compound Retro-2 and its derivatives have been demonstrated to be safe in vivo in mice even at high doses. Moreover, Retro-2 is an inhibitor of retrograde transport that affects syntaxin-5-dependent toxins and pathogens. As a consequence, it has a broad-spectrum activity that has been demonstrated both in vitro and in vivo against ricin, Shiga toxin-producing O104:H4 entero-hemorrhagic E. coli and Leishmania sp. and in vitro against Ebola, Marburg and poxviruses and Chlamydiales. An effect is anticipated on other toxins or pathogens that use retrograde trafficking and syntaxin-5. Since Retro-2 targets cell components of the host and not directly the pathogen, no selection of resistant pathogens is expected. These lead compounds need now to be developed as drugs for human use.


Benzamides/pharmacology , Chlamydiales/metabolism , Ebolavirus/metabolism , Leishmania/metabolism , Ricin/metabolism , Shiga Toxins/metabolism , Thiophenes/pharmacology , Animals , Benzamides/chemistry , Body Weight/drug effects , Chlamydiales/drug effects , Ebolavirus/drug effects , Escherichia coli/metabolism , HEK293 Cells , HeLa Cells , Humans , Injections, Intraperitoneal , Leishmania/drug effects , Mice , Mice, Inbred BALB C , Mitomycin/pharmacology , Models, Animal , RAW 264.7 Cells , Ricin/antagonists & inhibitors , Shiga Toxins/antagonists & inhibitors , Thiophenes/chemistry
6.
ChemMedChem ; 11(22): 2506-2510, 2016 11 21.
Article En | MEDLINE | ID: mdl-27778487

Retro-1 is a small molecule that displays two important biological activities: First, it blocks the actions of certain toxins by altering their intracellular trafficking. Second, it enhances the activity of oligonucleotides by releasing them from entrapment in endosomes. This raises the question of whether the two actions involve the same cellular target. Herein we report the effects of several Retro-1 analogues on both toxins and oligonucleotides. We found analogues that affect toxins but not oligonucleotides and vice-versa, while Retro-1 is the only compound that affects both. This indicates that the molecular target(s) involved in the two processes are distinct.


Benzodiazepinones/chemistry , Drug Delivery Systems , Oligonucleotides/chemistry , Shiga Toxin/pharmacology , Small Molecule Libraries/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Carriers/chemistry , HeLa Cells , Humans , Molecular Structure , Shiga Toxin/chemistry , Structure-Activity Relationship
7.
Sci Rep ; 5: 12131, 2015 Jul 16.
Article En | MEDLINE | ID: mdl-26179245

This article reports an efficient CH activation process for regioselective halogenation of 1,4-benzodiazepinones. Direct halogenation with NXS (X = Br, I) affords halogenated benzodiazepinones on the central aromatic ring whereas catalyst (Pd(OAc)2) controlled CH activation furnishes regioselectively ortho halogenated benzodiazepinones on the phenyl side chain.

8.
ChemMedChem ; 10(7): 1153-6, 2015 Jul.
Article En | MEDLINE | ID: mdl-26033849

The Shiga toxin (Stx) family is composed of related protein toxins produced by the bacteria Shigella dysenteriae and certain pathogenic strains of E. coli. No effective therapies for Stx intoxication have been developed yet. However, inhibitors that act on the intracellular trafficking of these toxins may provide new options for the development of therapeutic strategies. This study reports the synthesis, chromatographic separation, and pharmacological evaluation of the two enantiomers of Retro-1, a compound active against Stx and other such protein toxins. Retro-1 works by inhibiting retrograde transport of these toxins inside cells. In vitro experiments proved that the configuration of the stereocenter at position 5 is not crucial for the activity of this compound. X-ray diffraction data revealed (S)-Retro-1 to be slightly more active than (R)-Retro-1.


Benzodiazepinones/chemical synthesis , Benzodiazepinones/pharmacology , Shiga Toxin/antagonists & inhibitors , Benzodiazepinones/chemistry , Benzodiazepinones/isolation & purification , Crystallography, X-Ray , Dose-Response Relationship, Drug , Escherichia coli/chemistry , Models, Molecular , Molecular Structure , Shiga Toxin/metabolism , Shigella dysenteriae/chemistry , Stereoisomerism , Structure-Activity Relationship
9.
Nat Prod Rep ; 29(8): 845-69, 2012 Aug.
Article En | MEDLINE | ID: mdl-22714632

The Cephalotaxus genus belongs to the Cephalotaxaceae family of conifers. Over the past decades it has proved to be a fruitful source of interesting natural products, especially alkaloids (cephalotaxine esters) and terpenoids (abietanes, troponoids), which often display medicinal properties, especially in the anticancer area. Homoharringtonine is active against some orphan leukaemia and is nowadays approaching marketability. A phytochemical update will be provided and the total synthesis of alkaloids and terpenoids will be discussed in detail.


Biological Products/chemistry , Cephalotaxus/chemistry , Biological Products/chemical synthesis
10.
Org Lett ; 14(5): 1270-3, 2012 Mar 02.
Article En | MEDLINE | ID: mdl-22339261

A straightforward asymmetric synthesis of the cage oxygenated structure of (+)-harringtonolide has been accomplished for the first time. The key steps involved (i) a templated stereoselective IMDA reaction to build a highly functionalized cyclohexene ring D, (ii) functionalization of the cycloadduct, (iii) ring-closing metathesis providing the five-membered ring C, and finally (iv) a challenging one-step cascade cyclization of an epoxy-alcohol toward the target structure, whose mechanism was investigated.


Harringtonines/chemical synthesis , Cyclization , Models, Molecular , Molecular Structure , Oxidation-Reduction , Stereoisomerism
...