Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Biol Eng Comput ; 61(12): 3363-3385, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37672143

RESUMEN

Automatic seizure detection and prediction using clinical Electroencephalograms (EEGs) are challenging tasks due to factors such as low Signal-to-Noise Ratios (SNRs), high variance in epileptic seizures among patients, and limited clinical data constraints. To overcome these challenges, this paper presents two approaches for EEG signal classification. One of these approaches depends on Machine Learning (ML) tools. The used features are different types of entropy, higher-order statistics, and sub-band energies in the Hilbert Marginal Spectrum (HMS) domain. The classification is performed using Support Vector Machine (SVM), Logistic Regression (LR), and K-Nearest Neighbor (KNN) classifiers. Both seizure detection and prediction scenarios are considered. The second approach depends on spectrograms of EEG signal segments and a Convolutional Neural Network (CNN)-based residual learning model. We use 10000 spectrogram images for each class. In this approach, it is possible to perform both seizure detection and prediction in addition to a 3-state classification scenario. Both approaches are evaluated on the Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) dataset, which contains 24 EEG recordings for 6 males and 18 females. The results obtained for the HMS-based model showed an accuracy of 100%. The CNN-based model achieved accuracies of 97.66%, 95.59%, and 94.51% for Seizure (S) versus Pre-Seizure (PS), Non-Seizure (NS) versus S, and NS versus S versus PS classes, respectively. These results demonstrate that the proposed approaches can be effectively used for seizure detection and prediction. They outperform the state-of-the-art techniques for automatic seizure detection and prediction. Block diagram of proposed epileptic seizure detection method using HMS with different classifiers.


Asunto(s)
Epilepsia , Convulsiones , Masculino , Niño , Femenino , Humanos , Convulsiones/diagnóstico , Epilepsia/diagnóstico , Redes Neurales de la Computación , Electroencefalografía/métodos , Máquina de Vectores de Soporte , Procesamiento de Señales Asistido por Computador , Algoritmos
2.
Int J Numer Method Biomed Eng ; 38(6): e3573, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35077027

RESUMEN

Electroencephalography (EEG) is among the main tools used for analyzing and diagnosing epilepsy. The manual analysis of EEG must be conducted by highly trained clinicians or neuro-physiologists; a process that is considered to have a comparatively low inter-rater agreement. Furthermore, the new data interpretation consumes an excessive amount of time and resources. Hence, an automatic seizure detection and prediction system can improve the quality of patient care in terms of shortening the diagnosis period, reducing manual errors, and automatically detecting debilitating events. Moreover, for patient treatment, it is important to alert the patients of epilepsy seizures prior to seizure occurrence. Various distinguished studies presented good solutions for two-class seizure detection problems with binary classification scenarios. To deal with these challenges, this paper puts forward effective approaches for EEG signal classification for normal, pre-ictal, and ictal activities. Three models are presented for the classification task. Two of them are patient-specific, while the third one is patient non-specific, which makes it better for the general classification tasks. The two-class classification is implemented between normal and pre-ictal activities for seizure prediction and between normal and ictal activities for seizure detection. A more generalized three-class classification framework is considered to identify all EEG signal activities. The first model depends on a Convolutional Neural Network (CNN) with residual blocks. It contains thirteen layers with four residual learning blocks. It works on spectrograms of EEG signal segments. The second model depends on a CNN with three layers. It also works on spectrograms. On the other hand, the third model depends on Phase Space Reconstruction (PSR) to eliminate the limitations of the spectrograms used in the first models. A five-layer CNN is used with this strategy. The advantage of the PSR is the direct projection from the time domain, which keeps the main trend of different signal activities. The third model deals with all signal activities, and it was tested for all patients of the CHB-MIT dataset. It has a superior performance compared to the first models and the state-of-the-art models.


Asunto(s)
Aprendizaje Profundo , Epilepsia , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Redes Neurales de la Computación , Convulsiones/diagnóstico
3.
J Ambient Intell Humaniz Comput ; 13(4): 2025-2043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33680212

RESUMEN

Detecting COVID-19 from medical images is a challenging task that has excited scientists around the world. COVID-19 started in China in 2019, and it is still spreading even now. Chest X-ray and Computed Tomography (CT) scan are the most important imaging techniques for diagnosing COVID-19. All researchers are looking for effective solutions and fast treatment methods for this epidemic. To reduce the need for medical experts, fast and accurate automated detection techniques are introduced. Deep learning convolution neural network (DL-CNN) technologies are showing remarkable results for detecting cases of COVID-19. In this paper, deep feature concatenation (DFC) mechanism is utilized in two different ways. In the first one, DFC links deep features extracted from X-ray and CT scan using a simple proposed CNN. The other way depends on DFC to combine features extracted from either X-ray or CT scan using the proposed CNN architecture and two modern pre-trained CNNs: ResNet and GoogleNet. The DFC mechanism is applied to form a definitive classification descriptor. The proposed CNN architecture consists of three deep layers to overcome the problem of large time consumption. For each image type, the proposed CNN performance is studied using different optimization algorithms and different values for the maximum number of epochs, the learning rate (LR), and mini-batch (M-B) size. Experiments have demonstrated the superiority of the proposed approach compared to other modern and state-of-the-art methodologies in terms of accuracy, precision, recall and f_score.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA