Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(6): 703-715, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972349

RESUMEN

Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Neumonía Bacteriana , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Canales de Calcio/metabolismo , Canales de Calcio/farmacología , Calcio/metabolismo , Células HEK293 , Staphylococcus aureus Resistente a Meticilina/metabolismo , Señalización del Calcio , Inflamación/tratamiento farmacológico , Pulmón/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Neumonía Bacteriana/tratamiento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacología
2.
J Appl Toxicol ; 43(5): 680-693, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36372912

RESUMEN

E-cigarette, or vaping product use-associated lung injury (EVALI), is a severe respiratory disorder that caused a sudden outbreak of hospitalized young people in 2019. Using cannabis oil containing vaping products, including vitamin E acetate contaminants, was found to be strongly associated with EVALI. However, the underlying tissue impacts of the condition are still largely unknown. Here, we focused on the vehicle cannabinoid oil (CBD oil) and contaminant vitamin E acetate (VEA) effects on airway epithelial cells. Primary human bronchial epithelial (HBE) cultures were exposed to e-liquid aerosols that contained CBD oil and VEA in combination or the common e-liquid components PG/VG with and without nicotine. Cell viability analysis indicated dramatically increased cell death counts after 3 days of CBD exposure, and this effect was even higher after CBD + VEA exposure. Microscopic examination of the cultures revealed cannabinoid and VEA depositions on the epithelial surfaces and cannabinoid accumulation in exposed cells, followed by cell death. These observations were supported by proteomic analysis of the cell secretions that exhibited increases in known markers of airway epithelial toxicity, such as xenobiotic enzymes, factors related to oxidative stress response, and cell death indicators. Overall, our study provides insights into the association between cannabinoid oil and vitamin E acetate vaping and lung injury. Collectively, our results suggest that the adherent accumulation of CBD oil on airway surfaces and the cellular uptake of both CBD oil- and VEA-containing condensates cause elevated metabolic stress, leading to increased cell death rates in human airway epithelial cultures.


Asunto(s)
Cannabinoides , Sistemas Electrónicos de Liberación de Nicotina , Lesión Pulmonar , Vapeo , Humanos , Adolescente , Cannabinoides/toxicidad , Vapeo/efectos adversos , Lesión Pulmonar/inducido químicamente , Proteómica , Dronabinol/toxicidad , Aerosoles y Gotitas Respiratorias , Vitamina E/análisis , Vitamina E/toxicidad , Epitelio , Acetatos/toxicidad
3.
Am J Respir Cell Mol Biol ; 63(6): 767-779, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32877614

RESUMEN

Smoking remains a leading cause of preventable morbidity and mortality worldwide. Despite a downward trend in cigarette use, less-regulated tobacco products, such as cigarillos, which are often flavored to appeal to specific demographics, such as younger people, are becoming increasingly popular. Cigar/cigarillo smoking has been considered a safer alternative to cigarettes; however, the health risks associated with cigar in comparison with cigarette smoking are not well understood. To address this knowledge gap, we characterized the effects of multiple brands of cigarillos on the airway epithelium using ex vivo and in vivo models. To analyze these effects, we assessed the cellular viability and integrity of smoke-exposed primary airway cell cultures. We also investigated the protein compositions of apical secretions from cigarillo-exposed airway epithelial cultures and BAL fluid of cigarillo-exposed mice through label-free quantitative proteomics and determined the chemical composition of smoke collected from the investigated cigarillo products. We found that cigarillo smoke exerts similar or greater effects than cigarette smoke in terms of reduced cell viability; altered protein levels, including those of innate immune proteins; induced oxidative-stress markers; and greater nicotine delivery to cells. The analysis of the chemical composition of the investigated cigarillo products revealed differences that might be linked to the differential effects of these products on cell viability and protein abundance profiles, which have been associated with a range of health risks in the context of airway biology. These findings contradict the assumption that cigarillos might be safer and less harmful than cigarettes. Instead, our results indicate that cigarillo smoke is associated with equal or greater health risks and the same or increased airway toxicity compared with cigarette smoke.


Asunto(s)
Epitelio/efectos de los fármacos , Epitelio/metabolismo , Nicotina/farmacología , Sistema Respiratorio/metabolismo , Animales , Fumar Cigarrillos/efectos adversos , Aromatizantes/farmacología , Humanos , Ratones Endogámicos C57BL , Sistema Respiratorio/efectos de los fármacos , Fumar/efectos adversos , Nicotiana/efectos adversos , Productos de Tabaco/efectos adversos
4.
Am J Respir Cell Mol Biol ; 60(2): 209-220, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30230353

RESUMEN

Airway epithelium structure/function can be altered by local inflammatory/immune signals, and this process is called epithelial remodeling. The mechanism by which this innate response is regulated, which causes mucin/mucus overproduction, is largely unknown. Exosomes are nanovesicles that can be secreted and internalized by cells to transport cellular cargo, such as proteins, lipids, and miRNA. The objective of this study was to understand the role exosomes play in airway remodeling through cell-cell communication. We used two different human airway cell cultures: primary human tracheobronchial (HTBE) cells, and a cultured airway epithelial cell line (Calu-3). After intercellular exosomal transfer, comprehensive proteomic and genomic characterization of cell secretions and exosomes was performed. Quantitative proteomics and exosomal miRNA analysis profiles indicated that the two cell types are fundamentally distinct. HTBE cell secretions were typically dominated by fundamental innate/protective proteins, including mucin MUC5B, and Calu-3 cell secretions were dominated by pathology-associated proteins, including mucin MUC5AC. After exosomal transfer/intake, approximately 20% of proteins, including MUC5AC and MUC5B, were significantly altered in HTBE secretions. After exosome transfer, approximately 90 miRNAs (∼4%) were upregulated in HTBE exosomes, whereas Calu-3 exosomes exhibited a preserved miRNA profile. Together, our data suggest that the transfer of exosomal cargo between airway epithelial cells significantly alters the qualitative and quantitative profiles of airway secretions, including mucin hypersecretion, and the miRNA cargo of exosomes in target cells. This finding indicates that cellular information can be carried between airway epithelial cells via exosomes, which may play an important role in airway biology and epithelial remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Bronquios/citología , Comunicación Celular/fisiología , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Línea Celular , Células Cultivadas , Medios de Cultivo/metabolismo , Células Epiteliales/citología , Exosomas/metabolismo , Vesículas Extracelulares/genética , Expresión Génica , Humanos , MicroARNs , Mucina 5AC/metabolismo , Mucina 5B/metabolismo , Proteínas/análisis , Proteínas/metabolismo
5.
Am J Respir Crit Care Med ; 197(4): 492-501, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29053025

RESUMEN

RATIONALE: E-cigarettes have become increasingly popular and little is known about their potential adverse health effects. OBJECTIVES: To determine the effects of e-cigarette use on the airways. METHODS: Induced sputum samples from cigarette smokers, e-cigarette users, and nonsmokers were analyzed by quantitative proteomics, and the total and individual concentrations of mucins MUC5AC and MUC5B were determined by light scattering/refractometry and labeled mass spectrometry, respectively. Neutrophil extracellular trap (NET) formation rates were also determined for the same groups. MEASUREMENTS AND MAIN RESULTS: E-cigarette users exhibited significant increases in aldehyde-detoxification and oxidative stress-related proteins associated with cigarette smoke compared with nonsmokers. The levels of innate defense proteins associated with chronic obstructive pulmonary disease, such as elastase and matrix metalloproteinase-9, were significantly elevated in e-cigarette users as well. E-cigarette users' sputum also uniquely exhibited significant increases in neutrophil granulocyte-related and NET-related proteins, such as myeloperoxidase, azurocidin, and protein-arginine deiminase 4, despite no significant elevation in neutrophil cell counts. Peripheral neutrophils from e-cigarette users showed increased susceptibility to phorbol 12-myristate 13-acetate-induced NETosis. Finally, a compositional change in the gel-forming building blocks of airway mucus (i.e., an elevated concentration of mucin MUC5AC) was observed in both cigarette smokers and e-cigarette users. CONCLUSIONS: Together, our results indicate that e-cigarette use alters the profile of innate defense proteins in airway secretions, inducing similar and unique changes relative to cigarette smoking. These data challenge the concept that e-cigarettes are a healthier alternative to cigarettes.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Inmunidad Innata/inmunología , Pulmón/inmunología , Mucinas/inmunología , Activación Neutrófila/inmunología , Fumar/inmunología , Adulto , Cromatografía Líquida de Alta Presión , Estudios Transversales , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Mucinas/biosíntesis , Mucosa Respiratoria/inmunología , Esputo/inmunología , Adulto Joven
6.
Sci Rep ; 7: 46239, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28447619

RESUMEN

Little cigars (LCs) are regulated differently than cigarettes, allowing them to be potentially targeted at youth/young adults. We exposed human bronchial epithelial cultures (HBECs) to air or whole tobacco smoke from cigarettes vs. LCs. Chronic smoke exposure increased the number of dead cells, lactate dehydrogenase release, and interleukin-8 (IL-8) secretion and decreased apical cilia, cystic fibrosis transmembrane conductance regulator (CFTR) protein levels, and transepithelial resistance. These adverse effects were significantly greater in LC-exposed HBECs than cigarette exposed cultures. LC-exposure also elicited unique gene expression changes and altered the proteomic profiles of airway apical secretions compared to cigarette-exposed HBECs. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that LCs produced more chemicals than cigarettes, suggesting that the increased chemical load of LCs may be the cause of the greater toxicity. This is the first study of the biological effects of LCs on pulmonary epithelia and our observations strongly suggest that LCs pose a more severe danger to human health than cigarettes.


Asunto(s)
Bronquios/metabolismo , Bronquios/patología , Fumar Puros/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Productos de Tabaco/toxicidad , Muerte Celular/efectos de los fármacos , Línea Celular , Alquitrán , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Inflamación/patología , Espectrometría de Masas , Proteoma/metabolismo , Nicotiana
7.
PLoS One ; 8(10): e77768, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147077

RESUMEN

Ethanol is well known to adversely affect frontal executive functioning, which continues to develop throughout adolescence and into young adulthood. This is also a developmental window in which ethanol is misused by a significant number of adolescents. We examined the effects of acute and chronic ethanol exposure during adolescence on behavioral inhibition and efficiency using a modified water maze task. During acquisition, rats were trained to find a stable visible platform onto which they could escape. During the test phase, the stable platform was converted to a visible floating platform (providing no escape) and a new hidden platform was added in the opposite quadrant. The hidden platform was the only means of escape during the test phase. In experiment 1, adolescent animals received ethanol (1.0 g/kg) 30 min before each session during the test phase. In experiment 2, adolescent animals received chronic intermittent ethanol (5.0 g/kg) for 16 days (PND30 To PND46) prior to any training in the maze. At PND72, training was initiated in the same modified water maze task. Results from experiment 1 indicated that acute ethanol promoted behavioral disinhibition and inefficiency. Experiment 2 showed that chronic intermittent ethanol during adolescence appeared to have no lasting effect on behavioral disinhibition or new spatial learning during adulthood. However, chronic ethanol did promote behavioral inefficiency. In summary, results indicate that ethanol-induced promotion of perseverative behavior may contribute to the many adverse behavioral sequelae of alcohol intoxication in adolescents and young adults. Moreover, the long-term effect of adolescent chronic ethanol exposure on behavioral efficiency is similar to that observed after chronic exposure in humans.


Asunto(s)
Etanol/toxicidad , Animales , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
8.
Neurosci Lett ; 527(1): 11-5, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22959891

RESUMEN

Recent advances have been made in our understanding of the deleterious effects of both ethanol and THC on adolescent behavior and brain development. However, very little is known about the combined effects of EtOH+THC during adolescence, a time in which these drugs are often used together. The purpose of this experiment was to: (1) determine whether EtOH and/or THC induced greater working memory impairment in adolescent than adult male rats using the novel object recognition (NOR) task and (2) determine whether the EtOH+THC combination would produce a more potent additive effect in adolescents than adults when compared to these drugs alone. NOR was performed with a 24h delay under each of the four drug conditions: vehicle; 1.5g/kg ethanol; 1.0mg/kg THC; and 1.5g/kg EtOH+1.0mg/kg THC, at 72h intervals. The results show that there was an age effect on working memory in NOR after the EtOH+THC challenge. Specifically, adolescent animals showed a preference for the familiar object whereas adults showed no preference for the novel or familiar object, the latter being characteristic of a classic working memory deficit. These effects were not dependent on changes in exploration across session, global activity across drug condition, or total object exploration. These novel findings clearly indicate that further understanding of this age-drug interaction is crucial to elucidating the influence that adolescent EtOH+THC use may have on repeated drug use and abuse later in life.


Asunto(s)
Envejecimiento/fisiología , Toma de Decisiones/fisiología , Dronabinol/análogos & derivados , Etanol/administración & dosificación , Percepción de Forma/fisiología , Recuerdo Mental/fisiología , Reconocimiento en Psicología/fisiología , Envejecimiento/efectos de los fármacos , Animales , Toma de Decisiones/efectos de los fármacos , Dronabinol/administración & dosificación , Combinación de Medicamentos , Percepción de Forma/efectos de los fármacos , Masculino , Recuerdo Mental/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA