Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Chem Inf Model ; 63(4): 1293-1300, 2023 02 27.
Article En | MEDLINE | ID: mdl-36758214

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are neurotransmitter-activated cation channels ubiquitously expressed in vertebrate brains. The regulation of calcium flux through the channel pore by RNA-editing is linked to synaptic plasticity while excessive calcium influx poses a risk for neurodegeneration. Unfortunately, the molecular mechanisms underlying this key process are mostly unknown. Here, we investigated calcium conduction in calcium-permeable AMPAR using Molecular Dynamics (MD) simulations with recently introduced multisite force-field parameters for Ca2+. Our calculations are consistent with experiment and explain the distinct calcium permeability in different RNA-edited forms of GluA2. For one of the identified metal binding sites, multiscale Quantum Mechanics/Molecular Mechanics (QM/MM) simulations further validated the results from MD and revealed small but reproducible charge transfer between the metal ion and its first solvation shell. In addition, the ion occupancy derived from MD simulations independently reproduced the Ca2+ binding profile in an X-ray structure of an NaK channel mimicking the AMPAR selectivity filter. This integrated study comprising X-ray crystallography, multisite MD, and multiscale QM/MM simulations provides unprecedented insights into Ca2+ permeation mechanisms in AMPARs, and paves the way for studying other biological processes in which Ca2+ plays a pivotal role.


Calcium , Receptors, Glutamate , Calcium/metabolism , Receptors, Glutamate/chemistry , Receptors, Glutamate/metabolism , Ion Channels/metabolism , Signal Transduction , Molecular Dynamics Simulation
2.
J Mol Biol ; 435(6): 167970, 2023 03 15.
Article En | MEDLINE | ID: mdl-36682679

Ionotropic glutamate receptors are ligand-gated cation channels that play essential roles in the excitatory synaptic transmission throughout the central nervous system. A number of open-pore structures of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid (AMPA)-type glutamate receptors became available recently by cryo-electron microscopy (cryo-EM). These structures provide valuable insights into the conformation of the selectivity filter (SF), the part of the ion channel that determines the ion selectivity. Nonetheless, due to the moderate resolution of the cryo-EM structures, detailed information such as ion occupancy of monovalent and divalent cations as well as positioning of the side-chains in the SF is still missing. Here, in an attempt to obtain high-resolution information about glutamate receptor SFs, we incorporated partial SF sequences of the AMPA and kainate receptors into the bacterial tetrameric cation channel NaK, which served as a structural scaffold. We determined a series of X-ray structures of NaK-CDI, NaK-SDI and NaK-SELM mutants at 1.42-2.10 Å resolution, showing distinct ion occupation of different monovalent cations. Molecular dynamics (MD) simulations of NaK-CDI indicated the channel to be conductive to monovalent cations, which agrees well with our electrophysiology recordings. Moreover, previously unobserved structural asymmetry of the SF was revealed by the X-ray structures and MD simulations, implying its importance in ion non-selectivity of tetrameric cation channels.


Bacterial Proteins , Potassium Channels , Receptors, AMPA , Receptors, Kainic Acid , Cryoelectron Microscopy , Molecular Dynamics Simulation , Receptors, AMPA/chemistry , Receptors, AMPA/genetics , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/genetics , Protein Multimerization , Potassium Channels/chemistry , Potassium Channels/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
3.
IUCrJ ; 8(Pt 3): 421-430, 2021 May 01.
Article En | MEDLINE | ID: mdl-33953928

The sodium potassium ion channel (NaK) is a nonselective ion channel that conducts both sodium and potassium across the cellular membrane. A new crystallographic structure of NaK reveals conformational differences in the residues that make up the selectivity filter between the four subunits that form the ion channel and the inner helix of the ion channel. The crystallographic structure also identifies a side-entry, ion-conduction pathway for Na+ permeation that is unique to NaK. NMR studies and molecular dynamics simulations confirmed the dynamical nature of the top part of the selectivity filter and the inner helix in NaK as also observed in the crystal structure. Taken together, these results indicate that the structural plasticity of the selectivity filter combined with the dynamics of the inner helix of NaK are vital for the efficient conduction of different ions through the non-selective ion channel of NaK.

...