Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Brain Behav Immun ; 115: 505-516, 2024 01.
Article En | MEDLINE | ID: mdl-37972879

Neurodevelopmental disorders (NDDs) are a spectrum of conditions with commonalities as well as differences in terms of phenome, symptomatome, neuropathology, risk factors and underlying mechanisms. Immune dysregulation has surfaced as a major pathway in NDDs. However, it is not known if neurodevelopmental disorders share a common immunopathogenetic mechanism. In this study, we explored the possibility of a shared immune etiology in three early-onset NDDs, namely Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD) and Intellectual Disability Disorder (IDD). A panel of 48 immune pathway-related markers was assayed in 135 children with NDDs, represented by 45 children with ASD, ADHD and IDD in each group, along with 35 typically developing children. The plasma levels of 48 immune markers were analyzed on the Multiplex Suspension Assay platform using Pro Human cytokine 48-plex kits. Based on the cytokine/chemokine/growth factor levels, different immune profiles were computed. The primary characteristics of NDDs are depletion of the compensatory immune-regulatory system (CIRS) (z composite of IL-4, IL-10, sIL-1RA, and sIL-2R), increased interleukin (IL)-1 signaling associated with elevated IL-1α and decreased IL-1-receptor antagonist levels, increased neurogenesis, M1/M2 macrophage polarization and increased IL-4 as well as C-C Motif Chemokine Ligand 2 (CCL2) levels. With a cross-validated sensitivity of 81.8% and specificity of 94.4%, these aberrations seem specific for NDDs. Many immunological abnormalities are shared by ASD, ADHD and IDD, which are distinguished by minor differences in IL-9, IL-17 and CCL12. In contrast, machine learning reveals that NDD group consists of three immunologically distinct clusters, with enhanced neurogenesis, Th-1 polarization, or IL-1 signaling as the defining features. NDD is characterized by immune abnormalities that have functional implications for neurogenesis, neurotoxicity, and neurodevelopment. Using machine learning, NDD patients could be classified into subgroups with qualitatively distinct immune disorders that may serve as novel drug targets for the treatment of NDDs.


Autism Spectrum Disorder , Neurodevelopmental Disorders , Child , Humans , Interleukin-4 , Neurogenesis , Biomarkers , Macrophages , Chemokines
2.
Rev Neurosci ; 33(1): 93-109, 2022 01 27.
Article En | MEDLINE | ID: mdl-34047147

Circadian rhythms in most living organisms are regulated by light and synchronized to an endogenous biological clock. The circadian clock machinery is also critically involved in regulating and fine-tuning neurodevelopmental processes. Circadian disruption during embryonic development can impair crucial phases of neurodevelopment. This can contribute to neurodevelopmental disorders like autism spectrum disorder (ASD) in the offspring. Increasing evidence from studies showing abnormalities in sleep and melatonin as well as genetic and epigenetic changes in the core elements of the circadian pathway indicate a pivotal role of circadian disruption in ASD. However, the underlying mechanistic basis through which the circadian pathways influence the risk and progression of ASD are yet to be fully discerned. Well-recognized mechanistic pathways in ASD include altered immune-inflammatory, nitro oxidative stress, neurotransmission and synaptic plasticity, and metabolic pathways. Notably, all these pathways are under the control of the circadian clock. It is thus likely that a disrupted circadian clock will affect the functioning of these pathways. Herein, we highlight the possible mechanisms through which aberrations in the circadian clock might affect immune-inflammatory, nitro-oxidative, metabolic pathways, and neurotransmission, thereby driving the neurobiological sequelae leading to ASD.


Autism Spectrum Disorder , Sleep Wake Disorders , Autism Spectrum Disorder/genetics , Circadian Rhythm/physiology , Female , Humans , Neurotransmitter Agents , Oxidative Stress , Pregnancy , Sleep Wake Disorders/complications
4.
Eur Neuropsychopharmacol ; 52: 48-61, 2021 11.
Article En | MEDLINE | ID: mdl-34261013

Infection, particularly prenatal infection, leads to an enhanced risk of schizophrenia in the offspring. Interestingly, few data exist on the pathway(s) such as TLR and inflammasome, primarily involved in sensing the microorganisms and inducing downstream inflammatory responses, apoptosis and neuroprogressive changes that drive prenatal infection-induced risk of schizophrenia. Herein, we aimed to discern whether prenatal infection-induced maternal immune activation (MIA) causes schizophrenia-like behaviours through activation of TLR and inflammasome pathways in the brain of offspring. Sprague Dawley rats (n=15/group) were injected either with poly (I:C) or LPS or saline at gestational day (GD)-12. Significantly elevated plasma levels of IL-6, TNF-α and IL-17A assessed after 24 hours were observed in both the poly (I:C) and LPS-treated rats, while IL-1ß was only elevated in LPS-treated rats, indicating MIA. The offspring of poly (I:C)-and LPS-treated dams displayed increased anxiety-like behaviours, deficits in social behaviours and prepulse inhibition. The hippocampus of offspring rats showed increased expression of Tlr3, Tlr4, Nlrp3, Il1b, and Il18 of poly (I:C) and Tlr4, Nlrp3, Cas1, Il1b, and Il18 of LPS-treated dams. Furthermore, Tlr and inflammasome genes were associated with social deficits and impaired prepulse inhibition in offspring rats. The results suggest that MIA due to prenatal infection can trigger TLR and inflammasome pathways and enhances the risk of schizophrenia-like behaviours in the later stages of life of the offspring.


Prenatal Exposure Delayed Effects , Schizophrenia , Animals , Behavior, Animal , Female , Inflammasomes , Interleukin-18 , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Poly I-C/pharmacology , Pregnancy , Rats , Rats, Sprague-Dawley , Schizophrenia/metabolism , Toll-Like Receptor 4 , Toll-Like Receptors/genetics
5.
Mol Neurobiol ; 57(10): 4345-4361, 2020 Oct.
Article En | MEDLINE | ID: mdl-32720073

Schizophrenia is a complex neuropsychiatric disorder, influenced by a combined action of genes and environmental factors. The neurodevelopmental origin is one of the most widely recognized etiological models of this heterogeneous disorder. Environmental factors, especially infections during gestation, appear to be a major risk determinant of neurodevelopmental basis of schizophrenia. Prenatal infection may cause maternal immune activation (MIA) and enhance risk of schizophrenia in the offspring. However, the precise mechanistic basis through which MIA causes long-lasting schizophrenia-like behavioral deficits in offspring remains inadequately understood. Herein, we aimed to delineate whether prenatal infection-induced MIA causes schizophrenia-like behaviors through its long-lasting effects on immune-inflammatory and apoptotic pathways, oxidative stress toxicity, and antioxidant defenses in the brain of offspring. Sprague-Dawley rats were divided into three groups (n = 15/group) and were injected with poly (I:C), LPS, and saline at gestational day (GD)-12. Except IL-1ß, plasma levels of IL-6, TNF-α, and IL-17A assessed after 24 h were significantly elevated in both the poly (I:C)- and LPS-treated pregnant rats, indicating MIA. The rats born to dams treated with poly (I:C) and LPS displayed increased anxiety-like behaviors and significant deficits in social behaviors. Furthermore, the hippocampus of the offspring rats of both the poly (I:C)- and LPS-treated groups showed increased signs of lipid peroxidation, diminished total antioxidant content, and differentially upregulated expression of inflammatory (TNFα, IL6, and IL1ß), and apoptotic (Bax, Cas3, and Cas9) genes but decreased expression of neuroprotective (BDNF and Bcl2) genes. The results suggest long-standing effects of prenatal infections on schizophrenia-like behavioral deficits, which are mediated by immune-inflammatory and apoptotic pathways, increased oxidative stress toxicity, and lowered antioxidant and neuroprotective defenses. The findings suggest that prenatal infections may underpin neurodevelopmental aberrations and neuroprogression and subsequently schizophrenia-like symptoms.


Antioxidants/metabolism , Apoptosis , Inflammation/immunology , Neuroprotection , Oxidative Stress , Prenatal Exposure Delayed Effects/immunology , Schizophrenia/immunology , Signal Transduction , Animals , Anxiety/blood , Anxiety/complications , Anxiety/immunology , Apoptosis/genetics , Behavior, Animal , Brain/pathology , Female , Gene Expression Regulation , Inflammation/blood , Lipopolysaccharides , Neuroprotection/genetics , Poly I-C , Pregnancy , Prenatal Exposure Delayed Effects/blood , Prepulse Inhibition , Rats, Sprague-Dawley , Schizophrenia/blood , Schizophrenia/complications , Social Behavior , Thiobarbituric Acid Reactive Substances/metabolism , Up-Regulation
6.
Psychiatry Res ; 285: 112727, 2020 03.
Article En | MEDLINE | ID: mdl-31837816

Toll like receptors (TLRs), a class of conserved immune molecules are crucially involved in initiating innate immune response to infection. TLR activation and subsequent inflammation are linked to pathogenesis of many brain disorders. Preliminary studies indicate a possible role of TLR-driven immuno-inflammatory responses in schizophrenia. However, gene expression data of TLRs in drug-naïve as well as antipsychotic treated patients diagnosed with schizophrenia are albeit limited. In this study, expression profile of TLR3 and TLR4 genes in peripheral blood mononuclear cells (PBMCs) was compared between drug-naïve patients diagnosed with schizophrenia (N = 31) and healthy controls (N = 30). In addition, the pattern of expression of TLR3 and TLR4 genes were also examined after three months of antipsychotic medication in patients. Compared to healthy controls, gene expression levels of only TLR4 (F = 3.87, p = 0.05, ηp2 = 0.06), not TLR3 (F = 0.17, p = 0.71, ηp2 = 0.003) was significantly up-regulated in drug-naïve patients. The changes in the levels of gene expression of TLR3 (t = 0.09, p = 0.93, d = 0.02) and TLR4 (t = 0.29, p = 0.77, d = 0.06) before and after antipsychotic medication were not found to be statistically significant. This finding suggests possible contribution of TLR4 in immunopathogenetic pathway of schizophrenia.


Antipsychotic Agents/therapeutic use , Schizophrenia/drug therapy , Schizophrenia/genetics , Toll-Like Receptor 3/genetics , Toll-Like Receptor 4/genetics , Adult , Antipsychotic Agents/pharmacology , Female , Gene Expression , Humans , Immunity, Innate/drug effects , Immunity, Innate/physiology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/physiology , Male , Middle Aged , Schizophrenia/immunology , Toll-Like Receptor 3/biosynthesis , Toll-Like Receptor 4/biosynthesis
...