Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadh0123, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536929

RESUMEN

E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional
2.
Mol Cell ; 81(20): 4176-4190.e6, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34529927

RESUMEN

Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Poliubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía , Enzimas Desubicuitinizantes/genética , Activación Enzimática , Humanos , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Ubiquitina Tiolesterasa/genética , Ubiquitinación
3.
Mol Microbiol ; 112(2): 718-739, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31132312

RESUMEN

O-acetylserine sulfhydrylase (OASS) and cystathionine ß-synthase (CBS) are members of the PLP-II family, and involved in L-cysteine production. OASS produces L-cysteine via a de novo pathway while CBS participates in the reverse transsulfuration pathway. O-acetylserine-dependent CBS (OCBS) was previously identified as a new member of the PLP-II family, which are predominantly seen in bacteria. The bacterium Helicobacter pylori possess only one OASS (hp0107) gene and we showed that the protein coded by this gene actually functions as an OCBS and utilizes L-homocysteine and O-acetylserine (OAS) to produce cystathionine. HpOCBS did not show CBS activity with the substrate L-serine and required OAS exclusively. The HpOCBS structure in complex with methionine showed a closed cleft state, explaining the initial mode of substrate binding. Sequence and structural analyses showed differences between the active sites of OCBS and CBS, and explain their different substrate preferences. We identified three hydrophobic residues near the active site of OCBS, corresponding to one serine and two tyrosine residues in CBSs. Mutational studies were performed on HpOCBS and Saccharomyces cerevisiae CBS. A ScCBS double mutant (Y158F/Y226V) did not display activity with L-serine, indicating indispensability of these polar residues for selecting substrate L-serine, however, did show activity with OAS.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cistationina betasintasa/química , Cistationina betasintasa/metabolismo , Helicobacter pylori/enzimología , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cistationina/metabolismo , Cistationina betasintasa/genética , Estabilidad de Enzimas , Helicobacter pylori/química , Helicobacter pylori/genética , Homocisteína/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Metionina/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Especificidad por Sustrato
4.
J Cell Sci ; 131(10)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29685892

RESUMEN

Protein ubiquitylation is a dynamic post-translational modification that can be reversed by deubiquitylating enzymes (DUBs). It is unclear how the small number (∼100) of DUBs present in mammalian cells regulate the thousands of different ubiquitylation events. Here, we analysed annotated transcripts of human DUBs and found ∼300 ribosome-associated transcripts annotated as protein coding, which thus increases the total number of DUBs. By using USP35, a poorly studied DUB, as a case study, we provide evidence that alternative isoforms contribute to the functional expansion of DUBs. We show that there are two different USP35 isoforms that localise to different intracellular compartments and have distinct functions. Our results reveal that isoform 1 is an anti-apoptotic factor that inhibits staurosporine- and TNF-related apoptosis-inducing ligand (TRAIL; also known as TNFSF10)-induced apoptosis. In contrast, USP35 isoform 2 is an integral membrane protein of the endoplasmic reticulum (ER) that is also present at lipid droplets. Manipulations of isoform 2 levels cause rapid ER stress, likely through deregulation of lipid homeostasis, and lead to cell death. Our work highlights how alternative isoforms provide functional expansion of DUBs and sets directions for future research.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Endopeptidasas/metabolismo , Isoformas de Proteínas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Apoptosis , Endopeptidasas/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Isoformas de Proteínas/genética , Transporte de Proteínas , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitinación
5.
Mol Cell ; 70(1): 150-164.e6, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576527

RESUMEN

Deubiquitinating enzymes (DUBs) are important regulators of ubiquitin signaling. Here, we report the discovery of deubiquitinating activity in ZUFSP/C6orf113. High-resolution crystal structures of ZUFSP in complex with ubiquitin reveal several distinctive features of ubiquitin recognition and catalysis. Our analyses reveal that ZUFSP is a novel DUB with no homology to any known DUBs, leading us to classify ZUFSP as the seventh DUB family. Intriguingly, the minimal catalytic domain does not cleave polyubiquitin. We identify two ubiquitin binding domains in ZUFSP: a ZHA (ZUFSP helical arm) that binds to the distal ubiquitin and an atypical UBZ domain in ZUFSP that binds to polyubiquitin. Importantly, both domains are essential for ZUFSP to selectively cleave K63-linked polyubiquitin. We show that ZUFSP localizes to DNA lesions, where it plays an important role in genome stability pathways, functioning to prevent spontaneous DNA damage and also promote cellular survival in response to exogenous DNA damage.


Asunto(s)
Núcleo Celular/enzimología , Daño del ADN , Enzimas Desubicuitinizantes/metabolismo , Inestabilidad Genómica , Poliubiquitina/metabolismo , Sitios de Unión , Supervivencia Celular , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Lisina , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato , Ubiquitinación
6.
EMBO Rep ; 18(3): 392-402, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28082312

RESUMEN

The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage-selective recognition of Ub chains by Ub-binding domain (UBD)-containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY-1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48-linked polyUb. We here identify that this linkage-selective binding is mediated by a single MIU motif (MIU2) in MINDY-1. The crystal structure of MIU2 in complex with K48-linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48-linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs.


Asunto(s)
Secuencias de Aminoácidos , Poliubiquitina/metabolismo , Dominios y Motivos de Interacción de Proteínas , Ubiquitina Tiolesterasa/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Biológicos , Modelos Moleculares , Poliubiquitina/química , Unión Proteica , Conformación Proteica , Secuencias Repetidas en Tándem , Ubiquitina Tiolesterasa/química , Ubiquitinación
7.
Mol Cell ; 63(1): 146-55, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27292798

RESUMEN

Deubiquitinating enzymes (DUBs) remove ubiquitin (Ub) from Ub-conjugated substrates to regulate the functional outcome of ubiquitylation. Here we report the discovery of a new family of DUBs, which we have named MINDY (motif interacting with Ub-containing novel DUB family). Found in all eukaryotes, MINDY-family DUBs are highly selective at cleaving K48-linked polyUb, a signal that targets proteins for degradation. We identify the catalytic activity to be encoded within a previously unannotated domain, the crystal structure of which reveals a distinct protein fold with no homology to any of the known DUBs. The crystal structure of MINDY-1 (also known as FAM63A) in complex with propargylated Ub reveals conformational changes that realign the active site for catalysis. MINDY-1 prefers cleaving long polyUb chains and works by trimming chains from the distal end. Collectively, our results reveal a new family of DUBs that may have specialized roles in regulating proteostasis.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Evolución Molecular , Poliubiquitina/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Enzimas Desubicuitinizantes/química , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Pliegue de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
8.
Mol Cell ; 58(1): 83-94, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25752573

RESUMEN

Polyubiquitin chains regulate diverse cellular processes through the ability of ubiquitin to form chains of eight different linkage types. Although detected in yeast and mammals, little is known about K29-linked polyubiquitin. Here we report the generation of K29 chains in vitro using a ubiquitin chain-editing complex consisting of the HECT E3 ligase UBE3C and the deubiquitinase vOTU. We determined the crystal structure of K29-linked diubiquitin, which adopts an extended conformation with the hydrophobic patches on both ubiquitin moieties exposed and available for binding. Indeed, the crystal structure of the NZF1 domain of TRABID in complex with K29 chains reveals a binding mode that involves the hydrophobic patch on only one of the ubiquitin moieties and exploits the flexibility of K29 chains to achieve linkage selective binding. Further, we establish methods to study K29-linked polyubiquitin and find that K29 linkages exist in cells within mixed or branched chains containing other linkages.


Asunto(s)
Endopeptidasas/química , Lisina/química , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Endopeptidasas/genética , Endopeptidasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
J Bacteriol ; 195(12): 2826-38, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23585534

RESUMEN

To better understand the poor conservation of the helicase binding domain of primases (DnaGs) among the eubacteria, we determined the crystal structure of the Helicobacter pylori DnaG C-terminal domain (HpDnaG-CTD) at 1.78 Å. The structure has a globular subdomain connected to a helical hairpin. Structural comparison has revealed that globular subdomains, despite the variation in number of helices, have broadly similar arrangements across the species, whereas helical hairpins show different orientations. Further, to study the helicase-primase interaction in H. pylori, a complex was modeled using the HpDnaG-CTD and HpDnaB-NTD (helicase) crystal structures using the Bacillus stearothermophilus BstDnaB-BstDnaG-CTD (helicase-primase) complex structure as a template. By using this model, a nonconserved critical residue Phe534 on helicase binding interface of DnaG-CTD was identified. Mutation guided by molecular dynamics, biophysical, and biochemical studies validated our model. We further concluded that species-specific helicase-primase interactions are influenced by electrostatic surface potentials apart from the critical hydrophobic surface residues.


Asunto(s)
ADN Primasa/química , ADN Primasa/metabolismo , Helicobacter pylori/enzimología , Cristalografía por Rayos X , ADN Primasa/genética , Geobacillus stearothermophilus/química , Helicobacter pylori/química , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA